科技报告详细信息
Advances in the theory of box integrals
Bailey, David H. ; Borwein, J.M. ; Crandall, R.E.
Lawrence Berkeley National Laboratory
关键词: Dimensions;    Availability;    Integrals;    97;   
DOI  :  10.2172/964379
RP-ID  :  LBNL-2161E
RP-ID  :  DE-AC02-05CH11231
RP-ID  :  964379
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

Box integrals - expectations <|{rvec r}|{sup s}> or <|{rvec r}-{rvec q}|{sup s}> over the unit n-cube (or n-box) - have over three decades been occasionally given closed forms for isolated n,s. By employing experimental mathematics together with a new, global analytic strategy, we prove that for n {le} 4 dimensions the box integrals are for any integer s hypergeometrically closed in a sense we clarify herein. For n = 5 dimensions, we show that a single unresolved integral we call K{sub 5} stands in the way of such hyperclosure proofs. We supply a compendium of exemplary closed forms that naturally arise algorithmically from this theory.

【 预 览 】
附件列表
Files Size Format View
964379.pdf 383KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:63次