Near-Zero NOx Combustion Technology for ATS Mercury 50 Gas Turbine | |
Smith, Kenneth | |
Solar Turbines Incorporated | |
关键词: Nitrogen Oxides; Natural Gas; Catalytic Combustors; Carbon Monoxide; Air Pollution Abatement; | |
DOI : 10.2172/950699 RP-ID : None RP-ID : FC26-00CH11055 RP-ID : 950699 |
|
美国|英语 | |
来源: UNT Digital Library | |
【 摘 要 】
A project to demonstrate a near-zero NOx, catalytic combustion technology for natural gas-fired, industrial gas turbines is described. In a cooperative effort between Solar Turbines Incorporated and Precision Combustion Incorporated (PCI), proof-of-concept rig testing of PCI's fuel-rich catalytic combustion technology has been completed successfully. The primary technical goal of the project was to demonstrate NOx and CO emissions below 5ppm and 10 ppm, respectively, (corrected to 15% O{sub 2}) at realistic gas turbine operating conditions. The program consisted of two tasks. In the first task, a single prototype RCL{trademark} (Rich Catalytic Lean Burn) module was demonstrated at Taurus 70 (7.5 Mw) operating conditions (1.6 MPa, 16 atm) in a test rig. For a Taurus 70 engine, eight to twelve RCL modules will be required, depending on the final system design. In the second task, four modules of a similar design were adapted to a Saturn engine (1 Mw) test rig (600 kPa, 6 atm) to demonstrate gas turbine light-off and operation with an RCL combustion system. This project was initially focused on combustion technology for the Mercury 50 engine. However, early in the program, the Taurus 70 replaced the Mercury. This substitution was motivated by the larger commercial market for an ultra-low NOx Taurus 70 in the near-term. Rig tests using a single prototype RCL module at Taurus 70 conditions achieved NOx emissions as low as 0.75 ppm. A combustor turndown of approximately 110C (200F) was achieved with NOx and CO emissions below 3 ppm and 10 ppm, respectively. Catalyst light-off occurred at an inlet temperature of 310C (590F). Once lit the module remained active at inlet air temperatures as low as 204C (400F). Combustor pressure oscillations were acceptably low during module testing. Single module rig tests were also conducted with the Taurus 70 module reconfigured with a central pilot fuel injector. Such a pilot will be required in a commercial RCL system for turbine light-off and transient operation. At and near simulated full load engine conditions, the pilot operated at low pilot fueling rates without degrading overall system emissions. In the second project task, a set of four Taurus 70 modules was tested in an existing Saturn engine rig. The combustion system allowed smooth engine startup and load variation. At steady state conditions (between 82% and 89.7% engine speed; 32% and 61% load), NOx and CO emissions were below 3ppm and 10ppm, respectively. Rig limitations unrelated to the RCL technology prevented low emissions operation outside of this speed range. Combustor pressure oscillations were low, below 0.25 % (peak-to-peak) of the mean combustor pressure.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
950699.pdf | 986KB | download |