科技报告详细信息
Final Report-Optimization Under Uncertainty and Nonconvexity: Algorithms and Software
Linderoth, Jeff
Jeff Linderoth/Lehigh University
关键词: Mixed Integer Linear Programming;    Symmetry;    Mixed Integer Nonlinear Programming;    Computer Codes Numerical Optimization;    Optimization;   
DOI  :  10.2172/939366
RP-ID  :  DOE/ER/25694-1
RP-ID  :  FG02-05ER25694
RP-ID  :  939366
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

The goal of this research was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems.

【 预 览 】
附件列表
Files Size Format View
939366.pdf 183KB PDF download
  文献评价指标  
  下载次数:27次 浏览次数:109次