AECL/US INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors -- Fuel Requirements and Down-Select Report | |
Carmack, William ; Lee, Randy D. ; Medvedev, Pavel ; Meyer, Mitch ; Todosow, Michael ; Hamilton, Holly B. ; Nino, Juan ; Philpot, Simon ; Tulenko, James | |
Idaho National Laboratory | |
关键词: Management; Fuel Systems; Thermal Conductivity; 11 - Nuclear Fuel Cycle And Fuel Materials; Power Reactors; | |
DOI : 10.2172/911743 RP-ID : INL/EXT-05-00436 RP-ID : DE-AC07-99ID-13727 RP-ID : 911743 |
|
美国|英语 | |
来源: UNT Digital Library | |
【 摘 要 】
The U.S. Advanced Fuel Cycle Program and the Atomic Energy Canada Ltd (AECL) seek to develop and demonstrate the technologies needed to minimize the overall Pu and minor actinides present in the light water reactor (LWR) nuclear fuel cycles. It is proposed to reuse the Pu from LWR spent fuel both for the energy it contains and to decrease the hazard and proliferation impact resulting from storage of the Pu and minor actinides. The use of fuel compositions with a combination of U and Pu oxide (MOX) has been proposed as a way to recycle Pu and/or minor actinides in LWRs. It has also been proposed to replace the fertile U{sup 238} matrix of MOX with a fertile-free matrix (IMF) to reduce the production of Pu{sup 239} in the fuel system. It is important to demonstrate the performance of these fuels with the appropriate mixture of isotopes and determine what impact there might be from trace elements or contaminants. Previous work has already been done to look at weapons-grade (WG) Pu in the MOX configuration [1][2] and the reactor-grade (RG) Pu in a MOX configuration including small (4000 ppm additions of Neptunium). This program will add to the existing database by developing a wide variety of MOX fuel compositions along with new fuel compositions called inert-matrix fuel (IMF). The goal of this program is to determine the general fabrication and irradiation behavior of the proposed IMF fuel compositions. Successful performance of these compositions will lead to further selection and development of IMF for use in LWRs. This experiment will also test various inert matrix material compositions with and without quantities of the minor actinides Americium and Neptunium to determine feasibility of incorporation into the fuel matrices for destruction. There is interest in the U.S. and world-wide in the investigation of IMF (inert matrix fuels) for scenarios involving stabilization or burn down of plutonium in the fleet of existing commercial power reactors. IMF offer the potential advantage for more efficient destruction of plutonium and minor actinides (MA) relative to MOX fuel. Greater efficiency in plutonium reduction results in greater flexibility in managing plutonium inventories and in developing strategies for disposition of MA, as well as a potential for fuel cycle cost savings. Because fabrication of plutonium-bearing (and MA-bearing) fuel is expensive relative to UO{sub 2} in terms of both capital and production, cost benefit can be realized through a reduction in the number of plutonium-bearing elements required for a given burn rate. In addition, the choice of matrix material may be manipulated either to facilitate fuel recycling or to make plutonium recovery extremely difficult. In addition to plutonium/actinide management, an inert matrix fuel having high thermal conductivity may have operational and safety benefits; lower fuel temperatures could be used to increase operating and safety margins, uprate reactor power, or a combination of both. The CANDU reactor offers flexibility in plutonium management and MA burning by virtue of online refueling, a simple bundle design, and good neutron economy. A full core of inert matrix fuel containing either plutonium or a plutonium-actinide mix can be utilized, with plutonium destruction efficiencies greater than 90%, and high (>60%) actinide destruction efficiencies. The Advanced CANDU Reactor (ACR) could allow additional possibilities in the design of an IMF bundle, since the tighter lattice pitch and light-water coolant reduce or eliminate the need to suppress coolant void reactivity, allowing the center region of the bundle to include additional fissile material and to improve actinide burning. The ACR would provide flexibility for management of plutonium and MA from the existing LWR fleet, and would be complementary to the AFCI program in the U.S. Many of the fundamental principles concerning the use of IMF are nearly identical in LWRs and the ACR, including fuel/coolant compatibility, fuel fabrication, and fuel irradiation behavior. In addition, the U.S. and Canada both have interest in development of Generation IV SCWR (supercritical water reactor) technology, to which this fuel type would be applicable for plutonium and MA management. An inert matrix fuel with high thermal conductivity would be particularly beneficial to any SCWR concept. Given these similarities, it is proposed that a joint project be conducted within the framework of a U.S.-Canada INERI project on IMF. This report will present analysis of the inert matrix fuel compositions of interest for application to US and Canadian light water reactor fuel cycles, report on the development of fabrication procedures for these compositions, and provide an overview of the test and demonstration plan for these fuel systems.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
911743.pdf | 1723KB | download |