科技报告详细信息
DoD Climate Change Fuel Cell Program
Olsen, Ken
Ocean County College
关键词: Boilers;    Fuel Cell Power Plants;    Natural Gas;    30 Direct Energy Conversion;    Start-Up;   
DOI  :  10.2172/901630
RP-ID  :  None
RP-ID  :  FG26-03NT42014
RP-ID  :  901630
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

This report discusses the first year of operation of a fuel cell power plant located at the Ocean County College, Toms River, New Jersey. PPL EnergyPlus, LLC installed the plant under a contract with Ocean County College. A DFC{reg_sign}300 fuel cell, manufactured by Fuel Cell Energy, Inc. of Danbury, CT was selected for the project. The fuel cell successfully operated from January 1, 2004 to December 31, 2004. This report discusses the performance of the plant during this period. Ocean County College's decision to contract for use of a fuel cell at the college reflects the institution's commitment to managing energy costs, exercising environmental leadership, and leveraging innovative technologies to accomplish its energy and environmental goals. Ocean County College's director of facilities was interested in finding new energy cost reduction opportunities that could build on the institution's growing reputation for commitment to energy efficiency and environmental quality while exploring new technologies. This combination of goals positioned Ocean County College to value the prospect of installing a fuel cell as a demonstration project that could deliver on its commitment. PPL EnergyPlus, LLC developed the project and Millennium Builders, a PPL company, was chosen as the general contractor for the project. PPL and Ocean County College worked very closely with Jersey Central Power and Light (JCP&L) and New Jersey Natural Gas (NJNG) Company to assure integration of the fuel cell with the local utilities. The 250 kW molten carbonate fuel cell (MCFC) and its balance of plant is contained in an all-weather container located just outside the college's Instructional Building on a cement pad in a fenced-in 30 x 50 foot area in close proximity to the college's boiler and electrical rooms. Cables and piping bring power and hot water from the fuel cell into these interior control areas. The unit's electrical output is fed onto the college's main circuit while the hot water flows from the fuel cell to the college through a closed loop equipped with internal heat exchangers mounted on a custom skid in the boiler room. Fresh make-up water for the fuel cell's reverse osmosis equipment is piped separately from the boiler room out to the fuel cell. The fuel cell operates in parallel with the local electric utility's distribution system that serves the general area. The interconnection design relies on the grid protection components that come as standard equipment in the FCE unit design. Ultimately, the only substantive approval for the installation was for the parallel interconnection with the grid, provided by Jersey Central Power & Light. The utility had a well-defined set of interconnection requirements and procedures for units under 5 MW, and the approval process went smoothly and caused little delays. The primary liaison with PPL and the college was the utility's account representative. PPL and the college report that JCP&L was quite supportive of the project. The 60 percent reimbursement of installed costs was made through the New Jersey Clean Energy Fund, which is in turn funded through utility contributions. The Department of Energy provided an additional $250,000 grant under the Department of Defense fuel cell buy down program. PPL started testing the fuel cell on October 31, 2003. Final acceptance of the fuel cell was completed on December 21, 2003. Following several months of start-up activities, a high availability factor and few operating difficulties have marked operations during the first year.

【 预 览 】
附件列表
Files Size Format View
901630.pdf 18275KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:35次