科技报告详细信息
Separation of Olefin/Paraffin Mixtures with Carrier Facilitated Membrane Final Report
Merkel, T.C. ; Blanc, R. ; Zeid, J. ; Suwarlim, A. ; Firat, B. ; Wijmans, H. ; Asaro, M. (SRI) ; Greene, M. (Lummus)
Membrane Technology and Research, Inc., Menlo Park, CA
关键词: Olefin/Paraffin Separations;    36 Materials Science;    Lifetime;    Chelating Agents;    42 Engineering;   
DOI  :  10.2172/900815
RP-ID  :  DOE/GO/14151-F
RP-ID  :  FC36-04GO14151
RP-ID  :  900815
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

This document describes the results of a DOE funded joint effort of Membrane Technology and Research Inc. (MTR), SRI International (SRI), and ABB Lummus (ABB) to develop facilitated transport membranes for olefin/paraffin separations. Currently, olefin/paraffin separation is done by distillation—an extremely energy-intensive process because of the low relative volatilities of olefins and paraffins. If facilitated transport membranes could be successfully commercialized, the potential energy savings achievable with this membrane technology are estimated to be 48 trillion Btu per year by the year 2020. We discovered in this work that silver salt-based facilitated transport membranes are not stable even in the presence of ideal olefin/paraffin mixtures. This decline in membrane performance appears to be caused by a previously unrecognized phenomenon that we have named olefin conditioning. As the name implies, this mechanism of performance degradation becomes operative once a membrane starts permeating olefins. This project is the first study to identify olefin conditioning as a significant factor impacting the performance of facilitated olefin transport membranes. To date, we have not identified an effective strategy to mitigate the impact of olefin conditioning. other than running at low temperatures or with low olefin feed pressures. In our opinion, this issue must be addressed before further development of facilitated olefin transport membranes can proceed. In addition to olefin conditioning, traditional carrier poisoning challenges must also be overcome. Light, hydrogen, hydrogen sulfide, and acetylene exposure adversely affect membrane performance through unwanted reaction with silver ions. Harsh poisoning tests with these species showed useful membrane lifetimes of only one week. These tests demonstrate a need to improve the stability of the olefin complexing agent to develop membranes with lifetimes satisfactory for commercial application. A successful effort to improve membrane coating solution stability resulted in the finding that membrane performance loss could be reversed for all poisoning cases except hydrogen sulfide exposure. This discovery offers the potential to extend membrane lifetime through cyclic regeneration. We also found that certain mixed carriers exhibited greater stability in reducing environments than exhibited by silver salt alone. These results offer promise that solutions to deal with carrier poisoning are possible. The main achievement of this program was the progress made in gaining a more complete understanding of the membrane stability challenges faced in the use of facilitated olefin transport membranes. Our systematic study of facilitated olefin transport uncovered the full extent of the stability challenge, including the first known identification of olefin conditioning and its impact on membrane development. We believe that significant additional fundamental research is required before facilitated olefin transport membranes are ready for industrial implementation. The best-case scenario for further development of this technology would be identification of a novel carrier that is intrinsically more stable than silver ions. If the stability problems could be largely circumvented by development of a new carrier, it would provide a clear breakthrough toward finally recognizing the potential of facilitated olefin transport. However, even if such a carrier is identified, additional development will be required to insure that the membrane matrix is a benign host for the olefin-carrier complexation reaction and shows good long-term stability.

【 预 览 】
附件列表
Files Size Format View
900815.pdf 1059KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:14次