Development and Evaluation of Nanoscale Sorbents for Mercury Capture from Warm Fuel Gas | |
Jadhav, Raja A. | |
Institute of Gas Technology | |
关键词: Desorption; Testing; Capacity; 01 Coal, Lignite, And Peat; Fuel Gas; | |
DOI : 10.2172/898111 RP-ID : None RP-ID : FC26-04NT42312 RP-ID : 898111 |
|
美国|英语 | |
来源: UNT Digital Library | |
【 摘 要 】
Several different types of nanocrystalline metal oxide sorbents were synthesized and evaluated for capture of mercury (Hg) from coal-gasifier warm fuel gas. Detailed experimental studies were carried out to understand the fundamental mechanism of interaction between mercury and nanocrystalline sorbents over a range of fuel gas conditions. The metal oxide sorbents evaluated in this work included those prepared by GTI's subcontractor NanoScale Materials, Inc. (NanoScale) as well as those prepared in-house. These sorbents were evaluated for mercury capture in GTI's Mercury Sorbent Testing System. Initial experiments were focused on sorbent evaluation for mercury capture in N{sub 2} stream over the temperature range 423-533 K. These exploratory studies demonstrated that NanoActive Cr{sub 2}O{sub 3} along with its supported form was the most active of the sorbent evaluated. The capture of Hg decreased with temperature, which suggested that physical adsorption was the dominant mechanism of Hg capture. Desorption studies on spent sorbents indicated that a major portion of Hg was attached to the sorbent by strong bonds, which suggested that Hg was oxidized by the O atoms of the metal oxides, thus forming a strong Hg-O bond with the oxide. Initial screening studies also indicated that sulfided form of CuO/alumina was the most active for Hg capture, therefore was selected for detailed evaluation in simulated fuel gas (SFG). It was found that such supported CuO sorbents had high Hg-sorption capacity in the presence of H{sub 2}, provided the gas also contained H{sub 2}S. Exposure of supported CuO sorbent to H{sub 2}S results in the formation of CuS, which is an active sorbent for Hg capture. Sulfur atom in CuS forms a bond with Hg that results into its capture. Although thermodynamically CuS is predicted to form unreactive Cu{sub 2}S form when exposed to H{sub 2}, it is hypothesized that Cu atoms in such supported sorbents are in ''dispersed'' form, with two Cu atoms separated by a distance longer than required to form a Cu{sub 2}S molecule. Thus CuS remains in the stable reactive form as long as H{sub 2}S is present in the gas phase. It was also found that the captured Hg on such supported sorbents could be easily released when the spent sorbent is exposed to a H2-containing stream that is free of Hg and H{sub 2}S. Based on this mechanism, a novel regenerative process has been proposed to remove Hg from fuel gas at high temperature. Limited multicyclic studies carried out on the supported Cu sorbents showed their potential to capture Hg from SFG in a regenerative manner. This study has demonstrated that supported nanocrystalline Cu-based sorbents have potential to capture mercury from coal syngas over multiple absorption/regeneration cycles. Further studies are recommended to evaluate their potential to remove arsenic and selenium from coal fuel gas.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
898111.pdf | 437KB | download |