科技报告详细信息
Scale Dependence of Effective Matrix Diffusion Coefficient Evidence and Preliminary Interpertation
Liu, H.H. ; Zhang, Y.
United States. Department of Energy. Yucca Mountain Project Office.
关键词: Solutes;    Fractures;    Water;    Radioactive Wastes;    Simulation;   
DOI  :  10.2172/893877
RP-ID  :  NA
RP-ID  :  NA
RP-ID  :  893877
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

The exchange of solute mass (through molecular diffusion) between fluid in fractures and fluid in the rock matrix is called matrix diffusion. Owing to the orders-of-magnitude slower flow velocity in the matrix compared to fractures, matrix diffusion can significantly retard solute transport in fractured rock, and therefore is an important process for a variety of problems, including remediation of subsurface contamination and geological disposal of nuclear waste. The effective matrix diffusion coefficient (molecular diffusion coefficient in free water multiplied by matrix tortuosity) is an important parameter for describing matrix diffusion, and in many cases largely determines overall solute transport behavior. While matrix diffusion coefficient values measured from small rock samples in the laboratory are generally used for modeling field-scale solute transport in fractured rock (Boving and Grathwohl, 2001), several research groups recently have independently found that effective matrix diffusion coefficients much larger than laboratory measurements are needed to match field-scale tracer-test data (Neretnieks, 2002; Becker and Shapiro, 2000; Shapiro, 2001; Liu et al., 2003,2004a). In addition to the observed enhancement, Liu et al. (2004b), based on a relatively small number of field-test results, reported that the effective matrix diffusion coefficient might be scale dependent, and, like permeability and dispersivity, it seems to increases with test scale. This scale-dependence has important implications for large-scale solute transport in fractured rock. Although a number of mechanisms have been proposed to explain the enhancement of the effective matrix diffusion coefficient, the potential scale dependence and its mechanisms are not fully investigated at this stage. The major objective of this study is to again demonstrate (based on more data published in the literature than those used in Liu et al. [2004b]) the potential scale dependence of the effective matrix-diffusion coefficient, and to -develop a preliminary explanation for this scale-dependent behavior.

【 预 览 】
附件列表
Files Size Format View
893877.pdf 1097KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:27次