科技报告详细信息
EFFECTS OF TRITIUM EXPOSURE ON UHMW-PE, PTFE, AND VESPEL
Clark, E ; Kirk Shanahan, K
Savannah River Site (S.C.)
关键词: Isotopic Exchange;    Ionizing Radiations;    Molecular Weight;    Absorption Spectroscopy;    Polymers;   
DOI  :  10.2172/891658
RP-ID  :  WSRC-STI-2006-00049
RP-ID  :  DE-AC09-96SR18500
RP-ID  :  891658
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

Samples of three polymers, Ultra-High Molecular Weight Polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, also known as Teflon{reg_sign}), and Vespel{reg_sign} polyimide were exposed to 1 atmosphere of tritium gas at ambient temperature for varying times up to 2.3 years in closed containers. Sample mass and size measurements (to calculate density), spectra-colorimetry, dynamic mechanical analysis (DMA), and Fourier-transform infrared spectroscopy (FT-IR) were employed to characterize the effects of tritium exposure on these samples. Changes of the tritium exposure gas itself were characterized at the end of exposure by measuring total pressure and by mass spectroscopic analysis of the gas composition. None of the polymers exhibited significant changes of density. The color of initially white UHMW-PE and PTFE dramatically darkened to the eye and the color also significantly changed as measured by colorimetry. The bulk of UHMW-PE darkened just like the external surfaces, however the fracture surface of PTFE appeared white compared to the PTFE external surfaces. The white interior could have been formed while the sample was breaking or could reflect the extra tritium dose at the surface directly from the gas. The dynamic mechanical response of UHMW-PE was typical of radiation effects on polymers- an initial stiffening (increased storage modulus) and reduction of viscous behavior after three months exposure, followed by lowering of the storage modulus after one year exposure and longer. The storage modulus of PTFE increased through about nine months tritium exposure, then the samples became too weak to handle or test using DMA. Characterization of Vespel{reg_sign} using DMA was problematic--sample-to-sample variations were significant and no systematic change with tritium exposure could be discerned. Isotopic exchange and incorporation of tritium into UHMW-PE (exchanging for protium) and into PTFE (exchanging for fluorine) was observed by FT-IR using an attenuated total reflectance method. No significant change in the Vespel{reg_sign} infrared spectrum was observed after three months exposure. Protium significantly pressurized the UHMW-PE containers during exposure to about nine atmospheres (the initial pressure was one atmosphere of tritium). This is consistent with the well-known production of hydrogen by irradiation of polyethylene by ionizing radiation. The total pressure in the PTFE containers decreased, and a mass balance reveals that the observed decrease is consistent with the formation of small amounts of {sup 3}HF, which is condensed at ambient temperature. No significant change of pressure occurred in the Vespel{reg_sign} containers; however the composition of the gas became about 50% protium, showing that Vespel{reg_sign} interacted with the tritium gas atmosphere to some degree. The relative resistance to degradation from tritium exposure is least for PTFE, more for UHMW-PE, and the most for Vespel{reg_sign}, which is consistent with the known relative resistance of these polymers to gamma irradiation. This qualitatively agrees with the concept of equivalent effects for equivalent absorbed doses of radiation damage of polymers. Some of the changes of different polymers are qualitatively similar; however each polymer exhibited unique property changes when exposed to tritium. Information from this study that can be applied to a tritium facility is: (1) the relative resistance to tritium degradation of the three polymers studied is the same as the relative resistance to gamma irradiation in air (so relative rankings of polymer resistance to ionizing radiation can be used as a relative ranking for assessing tritium compatibility and polymer selection); and (2) all three polymers changed the gas atmosphere during tritium exposure--UHMW-PE and Vespel{reg_sign} exposed to tritium formed H{sub 2} gas (UHMW-PE much more so), and PTFE exposed to tritium formed {sup 3}HF. This observation of forming {sup 3}HF supports the general concept of minimizing chlorofluorocarbon polymers in tritium systems.

【 预 览 】
附件列表
Files Size Format View
891658.pdf 4713KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:13次