科技报告详细信息
Final Report on Regulation of Guaiacyl and Syringyl Monolignol Biosynthesis
Chiang, Vincent L.
North Carolina State University
关键词: Lignin;    Biomass;    Trees;    Genes;    Functionals;   
DOI  :  10.2172/891266
RP-ID  :  2003-1929
RP-ID  :  FG02-03ER15442
RP-ID  :  891266
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

The focus of this research is to understand syringyl monolignol biosynthesis that leads to the formation of syringyl lignin, a type of lignin that can be easily removed during biomass conversion. We have achieved the three originally proposed goals for this project. (1) SAD and CAD genes (enzyme catalytic and kinetic properties) and their functional relevance to CAld5H/AldOMT pathway, (2) spatiotemporal expression patterns of Cald5H, AldOMT, SAD and CAD genes, and (3) functions of CAld5H, AldOMT, and SAD genes in vivo using transgenic aspen. Furthermore, we also found that microRNA might be involved in the upstream regulatory network of lignin biosynthesis and wood formation. The achievements are as below. (1) Based on biochemical and molecular studies, we discovered a novel syringyl-specific alcohol dehydrogenase (SAD) involved in monolignol biosynthesis in angiosperm trees. Through CAld5H/OMT/SAD mediation, syringyl monolignol biosynthesis branches out from guaiacyl pathway at coniferaldehyde; (2) The function of CAld5H gene in this syringyl monolignol biosynthesis pathway also was confirmed in vivo in transgenic Populus; (3) The proposed major monolignol biosynthesis pathways were further supported by the involving biochemical functions of CCR based on a detailed kinetic study; (4) Gene promoter activity analysis also supported the cell-type specific expression of SAD and CAD genes in xylem tissue, consistent with the cell-specific locations of SAD and CAD proteins and with the proposed pathways; (5) We have developed a novel small interfering RNA (siRNA)-mediated stable gene-silencing system in transgenic plants; (6) Using the siRNA and P. trichocarpa transformation/regeneration systems we are currently producing transgenic P. trichocarpa to investigate the interactive functions of CAD and SAD in regulating guaiacyl and syringyl lignin biosynthesis; (7) We have cloned for the first time from a tree species, P. trichocarpa, small regulatory RNAs termed microRNAs (miRNAs) with likely effector roles in regulating the expression of genes involved in lignin biosynthesis and wood formation networks.

【 预 览 】
附件列表
Files Size Format View
891266.pdf 115KB PDF download
  文献评价指标  
  下载次数:25次 浏览次数:29次