科技报告详细信息
Effects of Varying RedoxConditions on Natural Attenuation of Inorganic Contaminants from the D-Area Coal Pile Runoff Basin (U)
Kaplan, D
Savannah River Site (S.C.)
关键词: Attenuation;    Sediments;    01 Coal, Lignite, And Peat;    Drying;    Source Terms;   
DOI  :  10.2172/890137
RP-ID  :  WSRC-RP-2004-00243
RP-ID  :  DE-AC09-96SR18500
RP-ID  :  890137
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

The objective of this study was to provide geochemical parameters to characterize the D-Area Coal Pile Runoff Basin (DCPRB) sediment as a potential source term. It is anticipated that the measured values will be used in risk calculations and will provide additional technical support for imposing Monitored Natural Attenuation at D-Area. This study provides a detailed evaluation of the DCPRB sediment and is part of another study that quantified the Monitored Natural Attenuation of inorganic contaminants more broadly at the D-Area Expanded Operable Unit, which includes the DCPRB (Powell et al. 2004). Distribution coefficients (K{sub d} values; a solid to liquid contaminant concentration ratio) and the Potentially Leachable Fraction (the percent of the total contaminant concentration in the sediment that can likely contribute to a contaminant plume) were measured in a DCPRB sediment as a function of redox conditions. Redox conditions at the DCPRB are expected to vary greatly as the system undergoes varying drying and flooding conditions. Conservative values; K{sub d} values that err on the side of being too low and Potentially Leachable Fraction values that err on the side of being too high, are presented. The K{sub d} values are high compared to conservative literature values, and underscores the importance of measuring site-specific values to provide estimates of sediments natural attenuation/sorption capacities. The Potentially Leachable Fraction indicates that as little as 27% of the As, but all of the Cu and Tl will be part of the source term. In the case of the As, the remaining 83% will likely never leach out of the sediment, thereby providing a form of natural attenuation. Importantly, Be, Cr, Cu, Ni, and V concentrations in the sediment were less-than twice background levels, indicating this sediment was not a potential source for these contaminants. K{sub d} values generally increased significantly (As, Cd, Co, Cr, Cu, Ni, Se, and Tl) when the sediment was flooded and after 36 days biostimulated through the addition of molasses. However, the contaminants that were newly sorbed tended to bind to weaker binding sites as the system was converted from an oxidizing to a reducing system. This redistribution of contaminants resulted in increased Potentially Leachable Fractions. In conclusion, these tests clearly indicate that the DCPRB sediment has a relatively high affinity to sorb most of the contaminants and that when evaluating the risk associated with this as a source term that only the Potentially Leachable Fraction of the total sediment contaminants concentration be used as the actual source term.

【 预 览 】
附件列表
Files Size Format View
890137.pdf 3889KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:13次