科技报告详细信息
Electronic Surface Structures of Coal and Mineral Particles
Mazumder, M.K. ; Lindquist, D.A. ; Tennal, K.B. ; Trigwell, Steve ; Farmer, Steve ; Nutsukpul, Albert ; Biris, Alex
University of Arkansas
关键词: Oxidation;    Pyrite;    Electrostatics;    Macerals;    Sulfur Dioxide;   
DOI  :  10.2172/884842
RP-ID  :  none
RP-ID  :  FG22-96PC96202
RP-ID  :  884842
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

Surface science studies related to tribocharging and charge separation studies were performed on electrostatic beneficiation of coal. In contrast to other cleaning methods, electrostatic beneficiation is a dry cleaning process requiring no water or subsequent drying. Despite these advantages, there is still uncertainty in implementing large scale commercial electrostatic beneficiation of coal. The electronic surface states of coal macerals and minerals are difficult to describe due to their chemical complexity and variability [1]. The efficiency in separation of mineral particles from organic macerals depends upon these surface states. Therefore, to further understand and determine a reason for the bipolar charging observed in coal separation, surface analysis studies using Ultra-violet Photoelectron Spectroscopy (UPS) and X-ray Photoelectron Spectroscopy (XPS) were performed on coal samples and several materials that are used or considered for use in tribocharging. Electrostatic charging is a surface phenomenon, so the electronic surface states of the particles, which are influenced by the environmental conditions, determine both polarity and magnitude of tribocharging. UPS was used to measure the work function of the materials as typically used in ambient air. XPS was used to determine the surface chemistry in the form of contamination and degree of oxidation under the same environmental conditions. Mineral bearing coals are those amenable to electrostatic beneficiation. Three types of coal, Illinois No. 6, Pittsburgh No. 8, and Kentucky No. 9 were investigated in this study. Pulverized coal powder was tribocharged against copper. Pyritic and other ashes forming minerals in coal powders should charge with a negative polarity from triboelectrification, and organic macerals should acquire positive charge, according to the relative differences in the surface work functions between the material being charged and the charging medium. Different types of minerals exhibit different magnitudes of negative charge and some may also charge positively against copper [2]. Only the mineral sulfur fraction of the total sulfur content is accessible by the electrostatic method since organic sulfur is covalently bound with carbon in macerals. The sizes of mineral constituents in coal range from about 0.1 to 100 {micro}m, but pyrites in many coals are on the lower end of this scale necessitating fine grinding for their liberation and separation. A ready explanation for coal powder macerals to charge positively by triboelectrification is found in the large numbers of surface carbon free radicals available to release electrons to form aromatic carbocations. There is evidence that these cationic charges are delocalized over several atoms [3]. Only perhaps one in one hundred thousand of the surface atoms is charged during triboelectrification [4], making it difficult to predict charging levels since the data depends upon the surface chemical species involved in charging. Based on the high electron affinity of oxygen atoms, oxidation is expected to decrease the extent of a coal particle to charge positively. Also, ion transfer may contribute to the increasingly negative charging character of oxidized coal carbons. A variety of oxidized surface functional groups may influence charge properties. For example, carboxylic acid functions can lose protons to form carboxylate anions. The samples of coal investigated in this study showed differing degrees of beneficiation, consistent with a more extensively oxidized Illinois No. 6 coal sample relative to that of Pittsburgh No. 8. Even though oxygen in air is deleterious to coal stored prior to beneficiation, other gases might favorably influence charge properties. To this end, coal exposed to vapors of acetone, ammonia, and sulfur dioxide also were beneficiated and analyzed in this study.

【 预 览 】
附件列表
Files Size Format View
884842.pdf 8419KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:77次