科技报告详细信息
Laboratory Directed Research and Development (LDRD) on Mono-uranium Nitride Fuel Development for SSTAR and Space Applications
Choi, J ; Ebbinghaus, B ; Meiers, T ; Ahn, J
Lawrence Livermore National Laboratory
关键词: Reactor Vessels;    Thermal Conductivity;    Nesdps Office Of Nuclear Energy Space And Defense Power Systems;    Nuclear Energy;    Energy Policy;   
DOI  :  10.2172/877887
RP-ID  :  UCRL-TR-218931
RP-ID  :  W-7405-ENG-48
RP-ID  :  877887
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

The US National Energy Policy of 2001 advocated the development of advanced fuel and fuel cycle technologies that are cleaner, more efficient, less waste-intensive, and more proliferation resistant. The need for advanced fuel development is emphasized in on-going DOE-supported programs, e.g., Global Nuclear Energy Initiative (GNEI), Advanced Fuel Cycle Initiative (AFCI), and GEN-IV Technology Development. The Directorates of Energy & Environment (E&E) and Chemistry & Material Sciences (C&MS) at Lawrence Livermore National Laboratory (LLNL) are interested in advanced fuel research and manufacturing using its multi-disciplinary capability and facilities to support a design concept of a small, secure, transportable, and autonomous reactor (SSTAR). The E&E and C&MS Directorates co-sponsored this Laboratory Directed Research & Development (LDRD) Project on Mono-Uranium Nitride Fuel Development for SSTAR and Space Applications. In fact, three out of the six GEN-IV reactor concepts consider using the nitride-based fuel, as shown in Table 1. SSTAR is a liquid-metal cooled, fast reactor. It uses nitride fuel in a sealed reactor vessel that could be shipped to the user and returned to the supplier having never been opened in its long operating lifetime. This sealed reactor concept envisions no fuel refueling nor on-site storage of spent fuel, and as a result, can greatly enhance proliferation resistance. However, the requirement for a sealed, long-life core imposes great challenges to research and development of the nitride fuel and its cladding. Cladding is an important interface between the fuel and coolant and a barrier to prevent fission gas release during normal and accidental conditions. In fabricating the nitride fuel rods and assemblies, the cladding material should be selected based on its the coolant-side corrosion properties, the chemical/physical interaction with the nitride fuel, as well as their thermal and neutronic properties. The US NASA space reactor, the SP-100 was designed to use mono-uranium nitride fuel. Although the SP-100 reactor was not commissioned, tens of thousand of nitride fuel pellets were manufactured and lots of them, cladded in Nb-1-Zr had been irradiated in fast test reactors (FFTF and EBR-II) with good irradiation results. The Russian Naval submarines also use nitride fuel with stainless steel cladding (HT-9) in Pb-Bi coolant. Although the operating experience of the Russian submarine is not readily available, such combination of fuel, cladding and coolant has been proposed for a commercial-size liquid-metal cooled fast reactor (BREST-300). Uranium mono-nitride fuel is studied in this LDRD Project due to its favorable properties such as its high actinide density and high thermal conductivity. The thermal conductivity of mono-nitride is 10 times higher than that of oxide (23 W/m-K for UN vs. 2.3 W/m-K for UO{sub 2} at 1000 K) and its melting temperature is much higher than that of metal fuel (2630 C for UN vs. 1132 C for U metal). It also has relatively high actinide density, (13.51 gU/cm{sup 3} in UN vs. 9.66 gU/cm{sup 3} in UO{sub 2}) which is essential for a compact reactor core design. The objective of this LDRD Project is to: (1) Establish a manufacturing capability for uranium-based ceramic nuclear fuel, (2) Develop a computational capability to analyze nuclear fuel performance, (3) Develop a modified UN-based fuel that can support a compact long-life reactor core, and (4) Collaborate with the Nuclear Engineering Department of UC Berkeley on nitride fuel reprocessing and disposal in a geologic repository.

【 预 览 】
附件列表
Files Size Format View
877887.pdf 74867KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:6次