科技报告详细信息
X-Ray Absorption Studies of Vanadium-Containing Metal Oxide Nanocrystals
Hohn, Keith, L.
Kansas State University, Manhattan, KS
关键词: X-Ray Diffraction;    Raman Spectroscopy;    Chemical Properties;    Oxidation;    Surface Area;   
DOI  :  10.2172/862283
RP-ID  :  DOEER45896-1
RP-ID  :  FG02-01ER45896
RP-ID  :  862283
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

Metal oxide nanocrystals offer significant potential for use as catalysts or catalyst supports due to their high surface areas and unique chemical properties that result from the high number of exposed corners and edges. However, little is known about the catalytic activity of these materials, especially as oxidation catalysts. This research focused on the preparation, characterization and use of vanadium-containing nanocrystals as selective oxidation catalysts. Three vanadium-containing nanocrystals were prepared using a modified sol-gel procedure: V/MgO, V/SiO2, and vanadium phosphate (VPO). These represent active oxidation catalysts for a number of industrially relevant reactions. The catalysts were characterized by x-ray diffraction and Raman, UV-VIS, infrared and x-ray absorption spectroscopies with the goal of determining the primary structural and chemical differences between nanocrystals and microcrystals. The catalytic activity of these catalysts was also studied in oxidative dehydrogenation of butane and methanol oxidation to formaldehyde. V/MgO nanocrystals were investigated for activity in oxidative dehydrogenation of butane and compared to conventional V/MgO catalysts. Characterization of V/MgO catalysts using Raman spectroscopy and x-ray absorption spectroscopy showed that both types of catalysts contained magnesium orthovanadate at vanadium loadings below 15 weight%, but above that loading, magnesium pyrovanadate may have been present. In general, MgO nanocrystals had roughly half the crystal size and double the surface area of the conventional MgO. In oxidative dehydrogenation of butane, nanocrystalline V/MgO gave higher selectivity to butene than conventional V/MgO at the same conversion. This difference was attributed to differences in vanadium domain size resulting from the higher surface areas of the nanocrystalline support, since characterization suggested that similar vanadium phases were present on both types of catalysts. Experiments in methanol oxidation were used to probe the chemical differences between sol-gel prepared and conventionally prepared metal oxides. Both V/MgO and V/SiO2 were studied. For both catalysts, similar product selectivities were noted for either preparation method, suggesting similar acid/base and redox properties for the catalysts. At lower weight loadings (<5%), activity was also similar, but at higher weight loadings the sol-gel prepared catalysts were more active. This was attributed to the greater dispersion of vanadium on sol-gel prepared catalysts, and it was suggested that small vanadium oxide domains were more active in methanol oxidation than polymeric and bulk domains. A novel sol-gel method was developed for preparation of VPO catalysts, which are used industrially in butane oxidation to maleic anhydride. In this method vanadium (V) triisopropoxide was reacted with orthophosphoric acid in THF to form a gel. Drying this gel under air resulted in an intercalated VOPO4 compound, where solvent molecules were trapped between layers of the vanadium phosphate compound. Higher surface areas could be achieved by drying this gel at high pressure in an autoclave. The amount of solvent (THF) placed in the autoclave was important in this process. Low amounts of solvent led to a lower surface area, as the solvent evaporated before reaching the critical point and collapsed the gel's pores. In addition, vanadium reduction occurred in the autoclave due to reaction of isopropanol with the vanadium phosphate. Higher amounts of THF reduced the concentration of isopropanol, leading to less reduction. Surfaces areas in excess of 100 m2/g were achieved with this method, and the product was confirmed through XPS and IR to be VOHPO4*0.5H2O, the common precursor for industrial VPO catalysts. Furthermore, this product displayed a platelet morphology, which is desirable for butane oxidation. Further work showed that this material could be transformed to (VO)2P2O7 (the industrial catalyst for butane oxidation to maleic anhydride) by heating under nitrogen without losing much surface area. The end result of this research was a better fundamental understanding for how crystal size affects the local environment of vanadium in mixed metal oxides and how this change affects catalytic properties.

【 预 览 】
附件列表
Files Size Format View
862283.pdf 672KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:60次