科技报告详细信息
Development of a New Class of Fe-3Cr-W(V)Ferritic STeels for Industrial Process Applications
Jawad, M.
Oak Ridge National Laboratory
关键词: Reactor Vessels;    Heat Recovery;    Steels;    Thermal Expansion;    36;   
DOI  :  10.2172/838517
RP-ID  :  ORNL/TM-2005/82
RP-ID  :  AC05-00OR22725
RP-ID  :  838517
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】
The project described in this report dealt with improving the materials performance and fabrication for hydrotreating reactor vessels, heat recovery systems, and other components for the petroleum and chemical industries. The petroleum and chemical industries use reactor vessels that can approach ship weights of approximately 300 tons with vessel wall thicknesses of 3-8 in. These vessels are typically fabricated from Fe-Cr-Mo steels with chromium ranging from 1.25 to 12% and molybdenum from 1 to 2%. Steels in this composition range have great advantages of high thermal conductivity, low thermal expansion, low cost, and good properties obtainable by heat treatment. With all of the advantages of Fe-Cr-Mo steels, several issues are faced in design and fabrication of vessels and related components. These issues include the following: 1. The low strengths of current alloys require thicker sections. 2. Increased thickness causes heat-treatment issues related to nonuniformity across the thickness and thus a failure to achieve optimum properties. 3. Fracture toughness (ductile-to-brittle transition) is a critical safety issue for these vessels, especially in thick sections because of the nonuniformity of the microstructure. 4. The postweld heat treatment (PWHT) needed after welding makes fabrication more timeconsuming with increased cost. 5. PWHT needed after welding also limits any modifications of the large vessels in service. The goal of this project was to reduce the weight of large-pressure-vessel components (ranging from 100 to 300 tons) by approximately 25%, reduce fabrication cost, and improve in-service modification feasibility through development of Fe-3Cr-W(V) steels with a combination of nearly a 50% higher strength, a lower ductile-brittle transition temperature (DBTT), a higher upper-shelf energy, ease of heat treating, and a strong potential for not requiring PWHT.
【 预 览 】
附件列表
Files Size Format View
838517.pdf 6858KB PDF download
  文献评价指标  
  下载次数:22次 浏览次数:21次