Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, and Visualization Methods with Applications to Site Characterization | |
Wright, David L. | |
Geological Survey (U.S.). Denver Federal Center. | |
关键词: Attenuation; Site Characterization; Data Processing; Processing; Radar; | |
DOI : 10.2172/838443 RP-ID : EMSP-86992--2003 RP-ID : AI07-02ER63513 RP-ID : 838443 |
|
美国|英语 | |
来源: UNT Digital Library | |
【 摘 要 】
The Department of Energy has identified the location and characterization of subsurface contaminants and the characterization of the subsurface as a priority need. Many DOE facilities are in need of subsurface imaging in the vadose and saturated zones. This includes (1) the detection and characterization of metal and concrete structures, (2) the characterization of waste pits (for both contents and integrity) and (3) mapping the complex geological/hydrological framework of the vadose and saturated zones. The DOE has identified ground penetrating radar (GPR) as a method that can non-invasively map transportation pathways and vadose zone heterogeneity. An advanced GPR system and advanced subsurface modeling, processing, imaging, and inversion techniques can be directly applied to several DOE science needs in more than one focus area and at many sites. Needs for enhanced subsurface imaging have been identified at Hanford, INEEL, SRS, ORNL, LLNL, SNL, LANL, and many other sites. In fact, needs for better subsurface imaging probably exist at all DOE sites. However, GPR performance is often inadequate due to increased attenuation and dispersion when soil conductivities are high.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
838443.pdf | 93KB | download |