科技报告详细信息
CONFORMANCE IMPROVEMENT USING GELS
Seright, Randall S.
New Mexico Institute of Mining and Technology (United States)
关键词: Formation Damage;    02 Petroleum;    Flow Rate;    Oil Wells;    Polymers;   
DOI  :  10.2172/823024
RP-ID  :  NONE
RP-ID  :  FC26-01BC15316
RP-ID  :  823024
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】
This technical progress report describes work performed from September 1, 2003, through February 29, 2004, for the project, ''Conformance Improvement Using Gels.'' We examined the properties of several ''partially formed'' gels that were formulated with a combination of high and low molecular weight HPAM polymers. After placement in 4-mm-wide fractures, these gels required about 25 psi/ft for brine to breach the gel (the best performance to date in fractures this wide). After this breach, stabilized residual resistance factors decreased significantly with increased flow rate. Also, residual resistance factors were up to 9 times greater for water than for oil. Nevertheless, permeability reduction factors were substantial for both water and oil flow. Gel with 2.5% chopped fiberglass effectively plugged 4-mm-wide fractures if a 0.5-mm-wide constriction was present. The ability to screen-out at a constriction appears crucial for particulate incorporation to be useful in plugging fractures. In addition to fiberglass, we examined incorporation of polypropylene fibers into gels. Once dispersed in brine or gelant, the polypropylene fibers exhibited the least gravity segregation of any particulate that we have tested to date. In fractures with widths of at least 2 mm, 24-hr-old gels (0.5% high molecular weight HPAM) with 0.5% fiber did not exhibit progressive plugging during placement and showed extrusion pressure gradients similar to those of gels without the fiber. The presence of the fiber roughly doubled the gel's resistance to first breach by brine flow. The breaching pressure gradients were not as large as for gels made with high and low molecular weight polymers (mentioned above). However, their material requirements and costs (i.e., polymer and/or particulate concentrations) were substantially lower than for those gels. A partially formed gel made with 0.5% HPAM did not enter a 0.052-mm-wide fracture when applying a pressure gradient of 65 psi/ft. This result suggests a lower limit of fracture width for entry of formed or partially formed gels (when reasonable pressure gradients are applied). In unfractured porous rock, we investigated the time dependence of oil and water permeabilities during various cycles of oil and water injection after placement of a Cr(III)-acetate-HPAM gel. Permeability to water stabilized rapidly (within 1 pore volume, PV), while permeability to oil stabilized gradually over the course of 100 PV. The behavior was surprisingly insensitive to core material (strongly water-wet Berea sandstone and strongly oil-wet porous polyethylene), core permeability (740 to 10,000 md), and applied pressure gradient (10 to 100 psi/ft).
【 预 览 】
附件列表
Files Size Format View
823024.pdf 65KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:16次