Advanced Stripper Gas Produced Water Remediation: Final Project Report | |
Bonner, Harry ; Malmquist, Roger | |
Western SynCoal, LLC | |
关键词: Natural Gas; Hydrocarbons; Elements; Liquid Flow; Surface Area; | |
DOI : 10.2172/822775 RP-ID : NONE RP-ID : FG26-00NT40965 RP-ID : 822775 |
|
美国|英语 | |
来源: UNT Digital Library | |
【 摘 要 】
Natural gas and oil production from stripper wells also produces water contaminated with hydrocarbons, and in most locations, salts and trace elements. The hydrocarbons are not generally present in concentrations that allow the operator to economically recover these liquids. Produced liquids, (Stripper Gas Water) which are predominantly water, present the operator with two options; purify the water to acceptable levels of contaminates, or pay for the disposal of the water. The project scope involves testing SynCoal as a sorbent to reduce the levels of contamination in stripper gas well produced water to a level that the water can be put to a productive use. Produced water is to be filtered with SynCoal, a processed sub-bituminous coal. It is expected that the surface area of and in the SynCoal would sorb the hydrocarbons and other contaminates and the effluent would be usable for agricultural purposes. Test plan anticipates using two well locations described as being disparate in the level and type of contaminates present. The loading capacity and the rate of loading for the sorbent should be quantified in field testing situations which include unregulated and widely varying liquid flow rates. This will require significant flexibility in the initial stages of the investigation. The scope of work outlined below serves as the guidelines for the testing of SynCoal carbon product as a sorbent to remove hydrocarbons and other contaminants from the produced waters of natural gas wells. A maximum ratio of 1 lb carbon to 100 lbs water treated is the initial basis for economic design. While the levels of contaminants directly impact this ratio, the ultimate economics will be dictated by the filter servicing requirements. This experimental program was intended to identify those treatment parameters that yield the best technological practice for a given set of operating conditions. The goal of this research was to determine appropriate guidelines for field trials by accurately characterizing the performance of SynCoal over a full range of operating conditions.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
822775.pdf | 712KB | download |