科技报告详细信息
Elastic-Plastic Strain Acceptance Criteria for Structures Subject to Rapidly Applied Transient Dynamic Loading
Solonick, W. R.
Lockheed Martin
关键词: Stresses;    Membranes;    Elastic-Plastic Strain;    Dynamic Loads;    42 Engineering;   
DOI  :  10.2172/815192
RP-ID  :  LM-03K006
RP-ID  :  AC12-00SN39357
RP-ID  :  815192
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】
Rapidly applied transient dynamic loads produce stresses and deflections in structures that typically exceed those from static loading conditions. Previous acceptance criteria for structures designed for rapidly applied transient dynamic loading limited stresses to those determined from elastic analysis. Different stress limits were established for different grades of structure depending upon the amount of permanent set considered acceptable. Structure allowed to sustain very limited permanent set is designed to stress limits not significantly greater than yield stress. Greater permanent set in structure under rapidly applied transient dynamic loading conditions is permitted by establishing stress limits that are significantly greater than yield stress but still provide adequate safety margin (with respect to failure). This paper presents a strain-based elastic-plastic (i.e., inelastic) analysis criterion developed as an alternative to the more conservative stress-based elastic analysis stress criterion for structures subjected to rapidly applied transient dynamic loading. The strain limits established are based on material ductility considerations only and are set as a fraction of the strain at ultimate stress obtained from an engineering stress/strain curve of the material. Strains limits are categorized by type as membrane or surface and by region as general, local , or concentrated. The application of the elastic-plastic criterion provides a more accurate, less conservative design/analysis basis for structures than that used in elastic stress-based analysis criteria, while still providing adequate safety margins.
【 预 览 】
附件列表
Files Size Format View
815192.pdf 5886KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:55次