科技报告详细信息
Reactor whole core transport calculations without fuel assembly homogenization
Tsoulfanidis, Nicholas ; Lewis, Elmer ; Smith, M.A. ; Palmiotti, G. ; Taiwo, T.A.
University of Missouri/ Nuclear Engineering Department (United States)
关键词: Fuel Pins;    Transport;    Geometry;    Anl;    22 General Studies Of Nuclear Reactors;   
DOI  :  10.2172/804739
RP-ID  :  DOE/ID/13632
RP-ID  :  FG07-98ID13632
RP-ID  :  804739
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

The variational nodal method is generalized by dividing each spatial node into a number of triangular finite elements designated as subelements. The finite subelement trail functions allow for explicit geometry representations within each node, thus eliminating the need for nodal homogenization. The method is implemented within the Argonne National Laboratory code VARIANT and applied to two-dimensional multigroup problems. Eigenvalue and pin-power results are presented for a four-assembly OECD/NEA benchmark problem containing enriched U{sub 2} and MOX fuel pins. Our seven-group model combines spherical or simplified spherical harmonic approximations in angle with isoparametric linear or quadratic subelement basis functions, thus eliminating the need for fuel-coolant homogenization. Comparisons with reference seven-group Monte Carlo solutions indicate that in the absence of pin-cell homogenization, high-order angular approximations are required to obtain accurate eigenvalues, while the results are substantially less sensitive to the refinement of the finite subelement grids.

【 预 览 】
附件列表
Files Size Format View
804739.pdf 5509KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:55次