Bioavailability of Fe(III) in natural soils and the impact on mobility of inorganic contaminants | |
Kosson, David S. ; Cowan, Robert M. ; Young, Lily Y. ; Hacherl, Eric L. ; Scala, David J. | |
Rutgers University, Piscataway, NJ (United States) | |
关键词: Kinetics; Radioisotopes; Soils; Contamination; 54 Environmental Sciences; | |
DOI : 10.2172/804131 RP-ID : NONE RP-ID : FG02-98ER62690 RP-ID : 804131 |
|
美国|英语 | |
来源: UNT Digital Library | |
【 摘 要 】
Inorganic contaminants, such as heavy metals and radionuclides, can adhere to insoluble Fe(III) minerals resulting in decreased mobility of these contaminants through subsurface environments. Dissimilatory Fe(III)-reducing bacteria (DIRB), by reducing insoluble Fe(III) to soluble Fe(II), may enhance contaminant mobility. The Savannah River Site, South Carolina (SRS), has been subjected to both heavy metal and radionuclide contamination. The overall objective of this project is to investigate the release of inorganic contaminants such as heavy metals and radionuclides that are bound to solid phase soil Fe complexes and to elucidate the mechanisms for mobilization of these contaminants that can be associated with microbial Fe(III) reduction. This is being accomplished by (i) using uncontaminated and contaminated soils from SRS as prototype systems, (ii) evaluating the diversity of DIRBs within the samples and isolating cultures for further study, (iii) using batch microcosms to evaluate the bioavailability of Fe(III) from pure minerals and SRS soils, (iv) developing kinetic and mass transfer models that reflect the system dynamics, and (v) carrying out soil column studies to elucidate the dynamics and interactions amongst Fe(III) reduction, remineralization and contaminant mobility.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
804131.pdf | 1603KB | download |