科技报告详细信息
Oxidation Behavior of Mo-Si-B Alloys in Wet Air
Kramer, M. ; Thom, A. ; Degirmen, O. ; Behrani, V. ; Akinc, M.
Ames Laboratory
关键词: Alloys;    Controlled Atmospheres;    Air;    Oxidation;    Thermal Barriers;   
DOI  :  10.2172/797633
RP-ID  :  IS-5153
RP-ID  :  W-7405-Eng-82
RP-ID  :  797633
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

Multiphase composite alloys based on the Mo-Si-B system are candidate materials for ultra-high temperature applications. In non load-bearing uses such as thermal barrier coatings or heat exchangers in fossil fuel burners, these materials may be ideally suited. The present work investigated the effect of water vapor on the oxidation behavior of Mo-Si-B phase assemblages. Three alloys were studied: Alloy 1 = Mo{sub 5}Si{sub 3}B{sub x} (T1)- MoSi{sub 2}- MoB, Alloy 2 = T1- Mo{sub 5}SiB{sub 2} (T2)- Mo{sub 3}Si, and Alloy 3 = Mo- T2- Mo{sub 3}Si. Tests were conducted at 1000 and 1100C in controlled atmospheres of dry air and wet air nominally containing 18, 55, and 150 Torr H{sub 2}O. The initial mass loss of each alloy was approximately independent of the test temperature and moisture content of the atmosphere. The magnitude of these initial losses varied according to the Mo content of the alloys. All alloys formed a continuous, external silica scale that protected against further mass change after volatilization of the initially formed MoO{sub 3}. All alloys experienced a small steady state mass change, but the calculated rates cannot be quantitatively compared due to statistical uncertainty in the individual mass measurements. Of particular interest is that Alloy 3, which contains a significant volume fraction of Mo metal, formed a protective scale. All alloys formed varying amounts of subscale Mo and MoO{sub 2}. This implies that oxygen transport through the external silica scale has been significantly reduced. For all alloys, water vapor accelerated the growth of a multiphase interlayer at the silica scale/unoxidized alloy interface. This interlayer is likely composed of fine Mo and MoO{sub 2} that is dispersed within a thin silica matrix. Alloy 3 was particularly sensitive to water accelerated growth of this interlayer. At 1100 C, the scale thickness after 300 hours increased from about 20 mm in dry air to nearly 100 mm in wet air.

【 预 览 】
附件列表
Files Size Format View
797633.pdf 668KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:20次