科技报告详细信息
Microstructural Evolution in the 2219 Aluminum Alloy During Severe Plastic Deformation
Kaibyshev, R.O. ; Safarov, I.M. ; Lesuen, D.R.
Lawrence Livermore National Laboratory
关键词: Aluminium;    Plastics;    Alloys;    Extrusion;    42 Engineering;   
DOI  :  10.2172/792652
RP-ID  :  UCRL-ID-138466
RP-ID  :  W-7405-Eng-48
RP-ID  :  792652
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

Numerous investigations have demonstrated that intense plastic deformation is an attractive procedure for producing an ultrafine grain size in metallic materials. Torsional deformation under high pressure and equal-channel angular extrusion are two techniques that can produce microstructures with grain sizes in the submicrometer and nanometer range. Materials with these microstructures have many attractive properties. The microstructures formed by these two processing techniques are essentially the same and thus the processes occurring during deformation should be the same. Most previous studies have examined the final microstructures produced as a result of severe plastic deformation and the resulting properties. Only a limited number of studies have examined the evolution of microstructure. As a result, some important aspects of ultra-fine grain formation during severe plastic deformation remain unknown. There is also limited data on the influence of the initial state of the material on the microstructural evolution and mechanisms of ultra-fine grain formation. This limited knowledge base makes optimization of processing routes difficult and retards commercial application of these techniques. The objective of the present work is to examine the microstructure evolution during severe plastic deformation of a 2219 aluminum alloy. Specific attention is given to the mechanism of ultrafine grain formation as a result of severe plastic deformation.

【 预 览 】
附件列表
Files Size Format View
792652.pdf 2853KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:26次