科技报告详细信息
Recharge Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment
Fayer, MJ ; Murphy, EM ; Downs, JL ; Khan, FO ; Lindenmeier, CW ; Bjornstad, BN
Pacific Northwest National Laboratory (U.S.)
关键词: 12 Management Of Radioactive Wastes, And Non-Radioactive Wastes From Nuclear Facilities;    Sediments;    Loam;    Functionals;    Radioactive Wastes;   
DOI  :  10.2172/750258
RP-ID  :  PNNL-13033
RP-ID  :  AC06-76RL01830
RP-ID  :  750258
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is known as the Hanford ILAW Performance Assessment (PA) Activity, hereafter called the ILAW PA project. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require predictions of contaminant migration from the facility. To make such predictions will require estimates of the fluxes of water moving through the sediments within the vadose zone around and beneath the disposal facility. These fluxes, loosely called recharge rates, are the primary mechanism for transporting contaminants to the groundwater. Pacific Northwest National Laboratory (PNNL) assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of recharge rates for current conditions and long-term scenarios involving the shallow-land disposal of ILAW. Specifically, recharge estimates are needed for a filly functional surface cover; the cover sideslope, and the immediately surrounding terrain. In addition, recharge estimates are needed for degraded cover conditions. The temporal scope of the analysis is 10,000 years, but could be longer if some contaminant peaks occur after 10,000 years. The elements of this report compose the Recharge Data Package, which provides estimates of recharge rates for the scenarios being considered in the 2001 PA. Table S.1 identifies the surface features and time periods evaluated. The most important feature, the surface cover, is expected to be the modified RCRA Subtitle C design. This design uses a 1-m-thick silt loam layer above sand and gravel filter layers to create a capillary break. A 0.15-m-thick asphalt layer underlies the filter layers to function as a backup barrier and to promote lateral drainage. Cover sideslopes are expected to be constructed with 1V:10H slopes using sandy gravel. The recharge estimates for each scenario were derived from lysimeter and tracer data collected by the ILAW PA and other projects and from modeling analyses.

【 预 览 】
附件列表
Files Size Format View
750258.pdf 11826KB PDF download
  文献评价指标  
  下载次数:25次 浏览次数:26次