科技报告详细信息
Matching Shapes Using Local Descriptors
White, R ; Newsam, S ; Kamath, C
Lawrence Livermore National Laboratory
关键词: Shape;    Transformations;    Images;    99 General And Miscellaneous//Mathematics, Computing, And Information Science;    99 General And Miscellaneous//Mathematics, Computing, And Information Science;   
DOI  :  10.2172/15014679
RP-ID  :  UCRL-TR-206057
RP-ID  :  W-7405-ENG-48
RP-ID  :  15014679
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

We present a method for comparing shapes of grayscale images in noisy circumstances. By establishing correspondences in a new image with a shape model, we can estimate a transformation between the new region and the model. Using a cost function for deviations from the model, we can rank resulting shape matches. We compare two separate distinct region detectors: Scale Saliency and difference of gaussians. We show that this method is successful in comparing images of fluid mixing under anisotropic geometric distortions and additive gaussian noise. Scale Saliency outperforms the difference of Gaussians in this context.

【 预 览 】
附件列表
Files Size Format View
15014679.pdf 1632KB PDF download
  文献评价指标  
  下载次数:17次 浏览次数:13次