科技报告详细信息
Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover
Aden, A. ; Ruth, M. ; Ibsen, K. ; Jechura, J. ; Neeves, K. ; Sheehan, J. ; Wallace, B. ; Montague, L. ; Slayton, A. ; Lukas, J.
National Renewable Energy Laboratory (U.S.)
关键词: Lignin;    Process Design;    Biomass;    Economics;    09 Biomass Fuels;   
DOI  :  10.2172/15001119
RP-ID  :  NREL/TP-510-32438
RP-ID  :  AC36-99-GO10337
RP-ID  :  15001119
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】
This report is an update of NREL's ongoing process design and economic analyses of processes related to developing ethanol from lignocellulosic feedstocks. The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update of the ongoing process design and economic analyses at NREL. We envision updating this process design report at regular intervals; the purpose being to ensure that the process design incorporates all new data from NREL research, DOE funded research and other sources, and that the equipment costs are reasonable and consistent with good engineering practice for plants of this type. For the non-research areas this means using equipment and process approaches as they are currently used in industrial applications. For the last report, published in 1999, NREL performed a complete review and update of the process design and economic model for the biomass-to-ethanol process utilizing co-current dilute acid prehydrolysis with simultaneous saccharification (enzymatic) and co-fermentation. The process design included the core technologies being researched by the DOE: prehydrolysis, simultaneous saccharification and co-fermentation, and cellulase enzyme production. In addition, all ancillary areas--feed handling, product recovery and purification, wastewater treatment (WWT), lignin combustor and boiler-turbogenerator, and utilities--were included. NREL engaged Delta-T Corporation (Delta-T) to assist in the process design evaluation, the process equipment costing, and overall plant integration. The process design and costing for the lignin combustor and boiler turbogenerator was reviewed by Reaction Engineering Inc. (REI) and Merrick & Company reviewed the wastewater treatment. Since then, NREL has engaged Harris Group (Harris) to perform vendor testing, process design, and costing of critical equipment identified during earlier work. This included solid/liquid separation and pretreatment reactor design and costing. Corn stover handling was also investigated to support DOE's decision to focus on corn stover as a feedstock for lignocellulosic ethanol. Working with Harris, process design and costing for these areas were improved through vendor designs, costing, and vendor testing in some cases. In addition to this work, enzyme costs were adjusted to reflect collaborative work between NREL and enzyme manufacturers (Genencor International and Novozymes Biotech) to provide a delivered enzyme for lignocellulosic feedstocks. This report is the culmination of our work and represents an updated process design and cost basis for the process using a corn stover feedstock. The process design and economic model are useful for predicting the cost benefits of proposed research. Proposed research results can be translated into modifications of the process design, and the economic impact can be assessed. This allows DOE, NREL, and other researchers to set priorities on future research with an understanding of potential reductions to the ethanol production cost. To be economically viable, ethanol production costs must be below market values for ethanol. DOE has chosen a target ethanol selling price of $1.07 per gallon as a goal for 2010. The conceptual design and costs presented here are based on a 2010 plant start-up date. The key research targets required to achieve this design and the $1.07 value are discussed in the report.
【 预 览 】
附件列表
Files Size Format View
15001119.pdf 2650KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:53次