科技报告详细信息
Advanced Geothermal Optical Transducer (AGOT)
LEL Corporation
关键词: Acceleration;    Transducers;    Alloys;    Testing;    Amplitudes;   
DOI  :  10.2172/1039983
RP-ID  :  DOE/ER/83035-1
RP-ID  :  FG02-00ER83035
RP-ID  :  1039983
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

Today's geothermal pressure-temperature measuring tools are short endurance, high value instruments, used sparingly because their loss is a major expense. In this project LEL offered to build and test a rugged, affordable, downhole sensor capable ofretuming an uninterrupted data stream at pressures and of 10,000 psi and temperatures up to 250 C, thus permitting continuous deep-well logging. It was proposed to meet the need by specializing LEL's patented 'Twin Column Transducer' technology to satisfy the demands of geothermal pressure/temperature measurements. TCT transducers have very few parts, none of which are moving parts, and all of which can be fabricated from high-temperature super alloys or from ceramics; the result is an extremely rugged device, essentially impervious to chemical attack and readily modified to operate at high pressure and temperature. To measure pressure and temperature they capitalize on the relative expansion of optical elements subjected to thermal or mechanical stresses; if one element is maintained at a reference pressure while the other is opened to ambient, the differential displacement then serves as a measure of pressure. A transducer responding to temperature rather than pressure is neatly created by 'inverting' the pressure-measuring design so that both deflecting structures see identical temperatures and temperature gradients, but whose thermal expansion coefficients are deliberately mismatched to give differential expansion. The starting point for development of a PT Tool was the company's model DPT feedback-stabilized 5,000 psi sensor (U.S. Patent 5,311,014, 'Optical Transducer for Measuring Downhole Pressure', claiming a pressure transducer capable of measuring static, dynamic, and true bi-directional differential pressure at high temperatures), shown in the upper portion of Figure 1. The DPT occupies a 1 x 2 x 4-inch volume, weighs 14 ounces, and is accurate to 1 percent of full scale. Employing a pair of identical, low-expansion, pressurized tubes machined from a single piece of Ni-spane-C 902 alloy, the instrument is insensitive to temperature- and temperature-gradient-induced errors and, by virtue of its inherent ruggedness, withstands 50G shocks and 100G acceleration. In operation the DPT sensor employs a micro-measurement technology employing the variation of signal amplitude as opposed illuminating and detector fibers deviate from their initial alignment under the influence of pressure forces. Phase I demonstrated that a temperature-sensing column can readily be appended to this device, transforming it into a 250 C-plus pressure-temperature Tool. Phase I testing of an unsophisticated laboratory transducer proved the concept's viability; the test instrument was linear to 5,000 psi (its design limit), exhibited 10 psi sensitivity (0.2 % of full scale), and demonstrated excellent repeatability when cycled from 0 to 5,000 psi and back. The impediments to extrapolating from this device to a working transducer were, therefore, practical engineering problems rather than fundamental limitations imposed by physics. One of these was packaging the sensing unit in a housing sufficiently robust and small enough in diameter for insertion through several kilometers of typical geothermal pipe; another was designing it to carry auxiliary weight great enough to drop the instrument against a large pressure gradient, while at the same time making provision for easy recovery via standard 'fishing' tools should the transducer separate from its cable and fall into the well. An optimal arrangement of optical delivery and signal extraction elements and their configuration was to be selected and suitable signal and data processing hardware and software provided.

【 预 览 】
附件列表
Files Size Format View
1039983.pdf 891KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:26次