科技报告详细信息
A THEORETICAL INVESTIGATION OF RADIOLYTIC H2 GENERATION FROM SOLIDS
Westbrook, M. ; Sindelar, R. ; Fisher, D.
Savannah River Site (S.C.)
关键词: Flammability;    Gibbsite;    Heating;    Pressurization;    Irradiation;   
DOI  :  10.2172/1034528
RP-ID  :  SRNL-STI-2011-00630
RP-ID  :  DE-AC09-08SR22470
RP-ID  :  1034528
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

Hydrogen generation from materials in nuclear materials storage is of critical interest due to the potential for pressurization and/or flammability issues. Studies have focused on aqueous systems or those with minor amounts of physisorbed water, since conventional knowledge identifies the radiolytic decomposition of water as the source of H{sub 2} gas. Furthermore, the approach to characterize gas generation is typically strictly empirical, relying on determination of G-values from which production in systems is estimated. Interestingly, exploratory work at SRNL1 on gamma exposure to fully-dried solids with chemically-bound water that are typical of those produced on aluminium-clad nuclear fuel in reactor and post-discharge storage has shown a profound production of hydrogen (as the sole gaseous species) from fully dried boehmite ({gamma}-AlOOH or Al{sub 2}O{sub 3} {center_dot} H{sub 2}O) powders and no observable hydrogen from gibbsite ({gamma}-Al(OH){sub 3} or Al{sub 2}O{sub 3} {center_dot} 3H{sub 2}O) under gamma irradiation from cobalt-60. This observation is significant in that gibbsite is known to thermally decompose at 80 C whereas boehmite is stable to 400 C. Radiation damage can have various effects on solids, including heating, bond breaking, and rearrangements in the bonding structure. For example, a molecule can be ionized resulting in the generation of free electrons which can, in turn, ionize another molecule. Alternately, reactive radical species such as {lg_bullet}OH or cation species may be formed, which can go on to change bonding structures.

【 预 览 】
附件列表
Files Size Format View
1034528.pdf 184KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:24次