科技报告详细信息
Computational thermal, chemical, fluid, and solid mechanics for geosystems management.
Davison, Scott ; Alger, Nicholas ; Turner, Daniel Zack ; Subia, Samuel Ramirez ; Carnes, Brian ; Martinez, Mario J. ; Notz, Patrick K. ; Klise, Katherine A. ; Stone, Charles Michael ; Field, Richard V., Jr. ; Newell, Pania ; Jove-Colon, Carlos F. ; Red-Horse, John Robert ; Bishop, Joseph E. ; Dewers, Thomas A. ; Hopkins, Polly L. ; Mesh, Mikhail ; Bean, James E. ; Moffat, Harry K. ; Yoon, Hongkyu
Sandia National Laboratories
关键词: Management;    Computer Architecture;    99 General And Miscellaneous//Mathematics, Computing, And Information Science;    Computers;    Implementation;   
DOI  :  10.2172/1029788
RP-ID  :  SAND2011-6643
RP-ID  :  AC04-94AL85000
RP-ID  :  1029788
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

【 预 览 】
附件列表
Files Size Format View
1029788.pdf 8168KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:29次