科技报告详细信息
Statistical Analyses of Second Indoor Bio-Release Field Evaluation Study at Idaho National Laboratory
Amidan, Brett G. ; Pulsipher, Brent A. ; Matzke, Brett D.
Pacific Northwest National Laboratory (U.S.)
关键词: Experimental Design;    Statistical Analyses;    Variability;    Sampling;   
RP-ID  :  PNNL-18932
RP-ID  :  AC05-76RL01830
RP-ID  :  1008263
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

In September 2008 a large-scale testing operation (referred to as the INL-2 test) was performed within a two-story building (PBF-632) at the Idaho National Laboratory (INL). The report “Operational Observations on the INL-2 Experiment” defines the seven objectives for this test and discusses the results and conclusions. This is further discussed in the introduction of this report. The INL-2 test consisted of five tests (events) in which a floor (level) of the building was contaminated with the harmless biological warfare agent simulant Bg and samples were taken in most, if not all, of the rooms on the contaminated floor. After the sampling, the building was decontaminated, and the next test performed. Judgmental samples and probabilistic samples were determined and taken during each test. Vacuum, wipe, and swab samples were taken within each room. The purpose of this report is to study an additional four topics that were not within the scope of the original report. These topics are: 1) assess the quantitative assumptions about the data being normally or log-normally distributed; 2) evaluate differences and quantify the sample to sample variability within a room and across the rooms; 3) perform geostatistical types of analyses to study spatial correlations; and 4) quantify the differences observed between surface types and sampling methods for each scenario and study the consistency across the scenarios. The following four paragraphs summarize the results of each of the four additional analyses. All samples after decontamination came back negative. Because of this, it was not appropriate to determine if these clearance samples were normally distributed. As Table 1 shows, the characterization data consists of values between and inclusive of 0 and 100 CFU/cm2 (100 was the value assigned when the number is too numerous to count). The 100 values are generally much bigger than the rest of the data, causing the data to be right skewed. There are also a significant number of zeros. Using QQ plots these data characteristics show a lack of normality from the data after contamination. Normality is improved when looking at log(CFU/cm2). Variance component analysis (VCA) and analysis of variance (ANOVA) were used to estimate the amount of variance due to each source and to determine which sources of variability were statistically significant. In general, the sampling methods interacted with the across event variability and with the across room variability. For this reason, it was decided to do analyses for each sampling method, individually. The between event variability and between room variability were significant for each method, except for the between event variability for the swabs. For both the wipes and vacuums, the within room standard deviation was much larger (26.9 for wipes and 7.086 for vacuums) than the between event standard deviation (6.552 for wipes and 1.348 for vacuums) and the between room standard deviation (6.783 for wipes and 1.040 for vacuums). Swabs between room standard deviation was 0.151, while both the within room and between event standard deviations are less than 0.10 (all measurements in CFU/cm2).

【 预 览 】
附件列表
Files Size Format View
1008263.pdf 1356KB PDF download
  文献评价指标  
  下载次数:41次 浏览次数:41次