Implementation Plans for a Systems Microbiology and Extremophile Research Facility | |
Wiley, H. S. | |
Pacific Northwest National Laboratory (U.S.) | |
关键词: Biomass; Microorganisms; Enzymes; Genes; Implementation; | |
DOI : 10.2172/1001549 RP-ID : PNNL-19073 RP-ID : AC05-76RL01830 RP-ID : 1001549 |
|
美国|英语 | |
来源: UNT Digital Library | |
【 摘 要 】
Introduction Biological organisms long ago solved many problems for which scientists and engineers seek solutions. Microbes in particular offer an astonishingly diverse set of capabilities that can help revolutionize our approach to solving many important DOE problems. For example, photosynthetic organisms can generate hydrogen from light while simultaneously sequestering carbon. Others can produce enzymes that break down cellulose and other biomass to produce liquid fuels. Microbes in water and soil can capture carbon and store it in the earth and ocean depths. Understanding the dynamic interaction between living organisms and the environment is critical to predicting and mitigating the impacts of energy-production-related activities on the environment and human health. Collectively, microorganisms contain most of the biochemical diversity on Earth and they comprise nearly one-half of its biomass. They primary impact the planet by acting as catalysts of biogeochemical cycles; they capture light energy and fix CO2 in the worlds oceans, they degrade plant polymers and convert them to humus in soils, they weather rocks and facilitate mineral precipitation. Although the ability of selected microorganisms to participate in these processes is known, they rarely live in monoculture but rather function within communities. In spite of this, little is known about the composition of microbial communities and how individual species function within them. We lack an understanding of the nature of the individual organisms and their genes, how they interact to perform complex functions such as energy and materials exchange, how they sense and respond to their environment and how they evolve and adapt to environmental change. Understanding these aspects of microbes and their communities would be transformational with far-reaching impacts on climate, energy and human health. This knowledge would create a foundation for predicting their behavior and, ultimately, manipulating them to solve DOE problems. Recent advances in whole-genome sequencing for a variety of organisms and improvements in high-throughput instrumentation have contributed to a rapid transition of the biological research paradigm towards understanding biology at a systems level. As a result, biology is evolving from a descriptive to a quantitative, ultimately predictive science where the ability to collect and productively use large amounts of biological data is crucial. Understanding how the ensemble of proteins in cells gives rise to biological outcomes is fundamental to systems biology. These advances will require new technologies and approaches to measure and track the temporal and spatial disposition of proteins in cells and how networks of proteins and other regulatory molecules give rise to specific activities. The DOE has a strong interest in promoting the application of systems biology to understanding microbial function and this comprises a major focus of its Genomics:GTL program. A major problem in pursuing what has been termed “systems microbiology” is the lack of the facilities and infrastructure for conducting this new style of research. To solve this problem, the Genomics:GTL program has funded a number of large-scale research centers focused on either mission-oriented outcomes, such as bioenergy, or basic technologies, such as gene sequencing, high-throughput proteomics or the identification of protein complexes. Although these centers generate data that will be useful to the research community, their scientific goals are relatively narrow and are not designed to accommodate the general community need for advanced capabilities for systems microbiology research.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
1001549.pdf | 290KB | download |