科技报告详细信息
ARIA: Automatic Resource Inference and Allocation for MapReduce Environments
Verma, Abhishek ; Cherkasova, Ludmila ; Campbell, Roy H.
HP Development Company
关键词: Map Reduce;    Modeling;    Resource Allocation;    Scheduling.;   
RP-ID  :  HPL-2011-58
学科分类:计算机科学(综合)
美国|英语
来源: HP Labs
PDF
【 摘 要 】

MapReduce and Hadoop represent an economically compelling alternative for efficient large scale data processing and advanced analytics in the enterprise. A key challenge in shared MapReduce clusters is the ability to automatically tailor and control resource allocations to different applications for achieving their performance goals. Currently, there is no job scheduler for MapReduce environments that given a job completion deadline, could allocate the appropriate amount of resources to the job so that it meets the required Service Level Objective (SLO). In this work, we propose a framework, called ARIA, to address this problem. It comprises of three inter-related components. First, for a production job that is routinely executed on a new dataset, we build a job profile that compactly summarizes critical performance characteristics of the underlying application during the map and reduce stages. Second, we design a MapReduce performance model, that for a given job (with a known profile) and its SLO (soft deadline), estimates the amount of resources required for job completion within the deadline. Finally, we implement a novel SLO-based scheduler in Hadoop that determines job ordering and the amount of resources to allocate for meeting the job deadlines. We validate our approach using a set of realistic applications. The new scheduler effectively meets the jobs' SLOs until the job demands exceed the cluster resources. The results of the extensive simulation study are validated through detailed experiments on a 66-node Hadoop cluster.

【 预 览 】
附件列表
Files Size Format View
RO201804100002901LZ 364KB PDF download
  文献评价指标  
  下载次数:26次 浏览次数:72次