科技报告详细信息
Tag Clustering with Self Organizing Maps
Sbodio, Marco Luca ; Simpson, Edwin
HP Development Company
关键词: SOM;    clustering;    machine learning;    folksonomy;    tagging;    web 2.0;   
RP-ID  :  HPL-2009-338
学科分类:计算机科学(综合)
美国|英语
来源: HP Labs
PDF
【 摘 要 】

Today, user-generated tags are a common way of navigating and organizing collections of resources. However, their value is limited by a lack of explicit semantics and differing use of tags between users. Clustering techniques that find groups of related tags could help to address these problems. In this paper, we show that a Self-Organizing Map (SOM) can be used to cluster tagged bookmarks. We present and test an iterative method for determining the optimal number of clusters. Finally, we show how the SOM can be used to intuitively classify new bookmarks into a set of clusters.

【 预 览 】
附件列表
Files Size Format View
RO201804100002514LZ 810KB PDF download
  文献评价指标  
  下载次数:24次 浏览次数:51次