Entanglement has been termed a critical resource for quantum information processing and is thought to be the reason that certain quantum algorithms, such as Shor's factoring algorithm, can achieve exponentially better performance than their classical counterparts. The nature of this resource is still not fully understood: here we use numerical simulation to investigate how entanglement between register qubits varies as Shor's algorithm is run on a quantum computer. The patterns in the entanglement are found to correlate with the choice of basis for the quantum Fourier transform rather than with any crucially quantum aspect of the algorithm. Notes: Vivien Kendon, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK 10 Pages