科技报告详细信息
A Weight-Scaling Algorithm for Min-Cost Imperfect Matchings in Bipartite Graphs
Ramshaw, Lyle ; Tarjan, Robert E.
HP Development Company
关键词: assignment problem;    imperfect matching;    minimum-cost- matching;    unbalanced bipartite graph;    weight-scaling algorithm;   
RP-ID  :  HPL-2012-72
学科分类:计算机科学(综合)
美国|英语
来源: HP Labs
PDF
【 摘 要 】

Call a bipartite graph G=(X,Y;E) "balanced" when = Given a balanced bipartite graph G with edge costs, the "assignment problem" asks for a perfect matching in G of minimum total cost. The Hungarian Method can solve assignment problems in time O(mn + n^2 log n), where n := = and m := If the edge weights are integers bounded in magnitude by C > 1, then algorithms using "weight scaling", such as that of Gabow and Tarjan, can lower the time to O(m sqrt(n) log(nC)). There are important applications in which G is "unbalanced", with not equal to and we require a min-cost matching in G of size r := min( or, more generally, of some specified size s

【 预 览 】
附件列表
Files Size Format View
RO201804100000304LZ 541KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:10次