科技报告详细信息
Using Mapreduce to scale events correlation discovery for business processes
Reguieg, Hicham ; Toumani, Farouk ; Motahari Nezhad, Hamid Reza ; Benatallah, Boualem
HP Development Company
关键词: business processes;    Event Correlation;    map reduce;   
RP-ID  :  HPL-2012-170
学科分类:计算机科学(综合)
美国|英语
来源: HP Labs
PDF
【 摘 要 】

The volume of data related to business process execution is increasing significantly in the enterprise. Many of data sources include events related to the execution of the same processes in various systems or applications. Event correlation is the task of analyzing a repository of event logs in order to find out the set of events that belong to the same business process execution instance. This is a key step in the discovery of business processes from event execution logs. Event correlation is a computationally-intensive task in the sense that it requires a deep analysis of very large and growing repositories of event logs, and exploration of various possible relationships among the events. In this paper, we present a scalable data analysis technique to support efficient event correlation for mining business processes. We propose a two-stages approach to compute correlation conditions and their entailed process instances from event logs using MapReduce framework. The experimental results show that the algorithm scales well to large datasets.

【 预 览 】
附件列表
Files Size Format View
RO201804100000221LZ 529KB PDF download
  文献评价指标  
  下载次数:20次 浏览次数:21次