Automated Critical PeakPricing Field Tests: 2006 Pilot ProgramDescription and Results | |
Piette, Mary Ann ; Watson, David ; Motegi, Naoya ; Kiliccote, Sila | |
关键词: 32; AIR; AUTOMATION; COMMISSIONING; COMMUNICATIONS; CONTROL SYSTEMS; ECONOMICS; ELECTRICITY; ENERGY MANAGEMENT; EVALUATION; FIELD TESTS; INTERNET; OCCUPANTS; PEAK LOAD; WEATHER; | |
DOI : 10.2172/919387 RP-ID : LBNL--62218 PID : OSTI ID: 919387 Others : R&D Project: E21423 Others : Other: BnR: 600303000 Others : TRN: US200825%%326 |
|
美国|英语 | |
来源: SciTech Connect | |
【 摘 要 】
During 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) performed a technology evaluation for the Pacific Gas and Electric Company (PG&E) Emerging Technologies Programs. This report summarizes the design, deployment, and results from the 2006 Automated Critical Peak Pricing Program (Auto-CPP). The program was designed to evaluate the feasibility of deploying automation systems that allow customers to participate in critical peak pricing (CPP) with a fully-automated response. The 2006 program was in operation during the entire six-month CPP period from May through October. The methodology for this field study included site recruitment, control strategy development, automation system deployment, and evaluation of sites' participation in actual CPP events through the summer of 2006. LBNL recruited sites in PG&E's territory in northern California through contacts from PG&E account managers, conferences, and industry meetings. Each site contact signed a memorandum of understanding with LBNL that outlined the activities needed to participate in the Auto-CPP program. Each facility worked with LBNL to select and implement control strategies for demand response and developed automation system designs based on existing Internet connectivity and building control systems. Once the automation systems were installed, LBNL conducted communications tests to ensure that the Demand Response Automation Server (DRAS) correctly provided and logged the continuous communications of the CPP signals with the energy management and control system (EMCS) for each site. LBNL also observed and evaluated Demand Response (DR) shed strategies to ensure proper commissioning of controls. The communication system allowed sites to receive day-ahead as well as day-of signals for pre-cooling, a DR strategy used at a few sites. Measurement of demand response was conducted using two different baseline models for estimating peak load savings. One was the CPP baseline model, which is based on the site electricity consumption from noon to 6 p.m. for the three days with highest consumption of the previous ten non-weekend days; it is not normalized for weather. The second model, the LBNL adjusted outside air temperature (OAT) regression baseline model, is based on OAT data and site electricity consumption from the previous ten days, and it is adjusted using weather regressions from the fifteen-minute electric load data during each event day. These baseline models were used to evaluate the demand reduction during each DR event for each site. The aggregated response from all sites for each event was also estimated using both baseline models. The evaluation research also included surveying the facility managers regarding any problems or issues that arose during the DR events. Questions covered occupant comfort, controls issues, and other potential problems. This 2006 Auto-CPP study included an assessment of the CPP economics for each site. This consisted of summing all of the credits on non-CPP days and subtracting the charges on CPP days. Estimates of the CPP economics without the demand response control strategies were also developed.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201705190001654LZ | 3588KB | download |