Cost Effective Surfactant Formulations for Improved Oil Recovery in Carbonate Reservoirs | |
William A. Goddard ; Yongchun Tang ; Patrick Shuler ; Mario Blanco ; Yongfu Wu | |
关键词: ADSORPTION; AQUEOUS SOLUTIONS; BRINES; CALCITE; CARBONATE ROCKS; CARBONATES; DECANE; FLOTATION; FRESH WATER; ICELAND; LIMESTONE; MOLECULAR STRUCTURE; PETROLEUM; RESERVOIR ROCK; SALINITY; SOLUBILITY; SURFACTANTS; WATER; | |
DOI : 10.2172/932887 RP-ID : None PID : OSTI ID: 932887 Others : TRN: US200814%%782 |
|
美国|英语 | |
来源: SciTech Connect | |
【 摘 要 】
This report summarizes work during the 30 month time period of this project. This was planned originally for 3-years duration, but due to its financial limitations, DOE halted funding after 2 years. The California Institute of Technology continued working on this project for an additional 6 months based on a no-cost extension granted by DOE. The objective of this project is to improve the performance of aqueous phase formulations that are designed to increase oil recovery from fractured, oil-wet carbonate reservoir rock. This process works by increasing the rate and extent of aqueous phase imbibition into the matrix blocks in the reservoir and thereby displacing crude oil normally not recovered in a conventional waterflood operation. The project had three major components: (1) developing methods for the rapid screening of surfactant formulations towards identifying candidates suitable for more detailed evaluation, (2) more fundamental studies to relate the chemical structure of acid components of an oil and surfactants in aqueous solution as relates to their tendency to wet a carbonate surface by oil or water, and (3) a more applied study where aqueous solutions of different commercial surfactants are examined for their ability to recover a West Texas crude oil from a limestone core via an imbibition process. The first item, regarding rapid screening methods for suitable surfactants has been summarized as a Topical Report. One promising surfactant screening protocol is based on the ability of a surfactant solution to remove aged crude oil that coats a clear calcite crystal (Iceland Spar). Good surfactant candidate solutions remove the most oil the quickest from the surface of these chips, plus change the apparent contact angle of the remaining oil droplets on the surface that thereby indicate increased water-wetting. The other fast surfactant screening method is based on the flotation behavior of powdered calcite in water. In this test protocol, first the calcite power is pre-treated to make the surface oil-wet. The next step is to add the pre-treated powder to a test tube and add a candidate aqueous surfactant formulation; the greater the percentage of the calcite that now sinks to the bottom rather than floats, the more effective the surfactant is in changing the solids to become now preferentially water-wet. Results from the screening test generally are consistent with surfactant oil recovery performance reported in the literature. The second effort is a more fundamental study. It considers the effect of chemical structures of different naphthenic acids (NA) dissolved in decane as model oils that render calcite surfaces oil-wet to a different degree. NAs are common to crude oil and are at least partially responsible for the frequent observation that carbonate reservoirs are oil-wet. Because pure NA compounds are used, trends in wetting behavior can be related to NA molecular structure as measured by solid adsorption, contact angle and our novel, simple flotation test with calcite. Experiments with different surfactants and NA-treated calcite powder provide information about mechanisms responsible for sought after reversal to a water-wet state. Key findings include: (1) more hydrophobic NA's are more prone to induce oil-wetting, and (2) recovery of the model oil from limestone core was better with cationic surfactants, but one nonionic surfactant, Igepal CO-530, also had favorable results. This portion of the project included theoretical calculations to investigate key basic properties of several NAs such as their acidic strength and their relative water/oil solubility, and relate this to their chemical structure. The third category of this project focused on the recovery of a light crude oil from West Texas (McElroy Field) from a carbonate rock (limestone outcrop). For this effort, the first item was to establish a suite of surfactants that would be compatible with the McElroy Field brine. Those were examined further for their ability to recover oil by imbibition. Results demonstrate several types of promising candidates, and that within a given series of nonionic surfactants the oil recovery appears to be related to the HLB of each surfactant. For the McElroy brine and crude oil system, higher HLB (more water soluble) surfactants perform better than in earlier imbibition tests performed with the model oil and a fresh water or low salinity brine. We speculate that this difference mostly is because a more water soluble surfactant is required to be compatible with higher salinity of the McElroy brine (over 3 wt% salt).
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201705190000826LZ | 792KB | download |