科技报告详细信息
Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes
Guillermo Bazan ; Alexander Mikhailovsky
关键词: ACCELERATION;    ACCURACY;    ANNIHILATION;    CHARGE TRANSPORT;    COATINGS;    EFFICIENCY;    FABRICATION;    LIGHT EMITTING DIODES;    NANOSTRUCTURES;    PERFORMANCE;    PLASMONS;    POTENTIALS;    QUENCHING;    RADIATIVE DECAY;    RECOMBINATION;    SATURATION;    SOLAR PROTONS;    SPIN;    TRANSPORT;    TRIPLETS;   
DOI  :  10.2172/1001222
RP-ID  :  None
PID  :  OSTI ID: 1001222
Others  :  TRN: US1100442
美国|英语
来源: SciTech Connect
PDF
【 摘 要 】

The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is especially pronounced in solution processed OLEDs lacking the accuracy and precision of fabrication found in their small molecule counterparts. From this point of view, it seems beneficial to develop materials allowing reduction of the operation bias voltage via improvement of the charge injection. The materials sought have to be compatible with solution-based fabrication process and allow easy incorporation of metal nanostructures.

【 预 览 】
附件列表
Files Size Format View
RO201705180001406LZ 582KB PDF download
  文献评价指标  
  下载次数:19次 浏览次数:29次