科技报告详细信息
Detailed Reaction Kinetics for CFD Modeling of Nuclear Fuel Pellet Coating for High Temperature Gas-Cooled Reactors
Battaglia, Francine
关键词: CHEMICAL REACTIONS;    CHEMICAL VAPOR DEPOSITION;    CHEMISTRY;    COATINGS;    COMPUTERIZED SIMULATION;    FISSION;    FISSION PRODUCTS;    FLUID MECHANICS;    FUEL CYCLE;    FUEL PARTICLES;    FUEL PELLETS;    KINETICS;    NUCLEAR FUELS;    NUCLEAR POWER;    PELLETS;    PYROLYTIC CARBON;    REACTION KINETICS;    REACTORS;    SILICON;    SILICON CARBIDES;   
DOI  :  10.2172/942124
RP-ID  :  DOE-ID14661-1
PID  :  OSTI ID: 942124
Others  :  TRN: US0900513
学科分类:核能源与工程
美国|英语
来源: SciTech Connect
PDF
【 摘 要 】
The research project was related to the Advanced Fuel Cycle Initiative and was in direct alignment with advancing knowledge in the area of Nuclear Fuel Development related to the use of TRISO fuels for high-temperature reactors. The importance of properly coating nuclear fuel pellets received a renewed interest for the safe production of nuclear power to help meet the energy requirements of the United States. High-temperature gas-cooled nuclear reactors use fuel in the form of coated uranium particles, and it is the coating process that was of importance to this project. The coating process requires four coating layers to retain radioactive fission products from escaping into the environment. The first layer consists of porous carbon and serves as a buffer layer to attenuate the fission and accommodate the fuel kernel swelling. The second (inner) layer is of pyrocarbon and provides protection from fission products and supports the third layer, which is silicon carbide. The final (outer) layer is also pyrocarbon and provides a bonding surface and protective barrier for the entire pellet. The coating procedures for the silicon carbide and the outer pyrocarbon layers require knowledge of the detailed kinetics of the reaction processes in the gas phase and at the surfaces where the particles interact with the reactor walls. The intent of this project was to acquire detailed information on the reaction kinetics for the chemical vapor deposition (CVD) of carbon and silicon carbine on uranium fuel pellets, including the location of transition state structures, evaluation of the associated activation energies, and the use of these activation energies in the prediction of reaction rate constants. After the detailed reaction kinetics were determined, the reactions were implemented and tested in a computational fluid dynamics model, MFIX. The intention was to find a reduced mechanism set to reduce the computational time for a simulation, while still providing accurate results. Furthermore, fast chemistry techniques would be coupled to MFIX to effectively treat the complex chemistry thus improve the computational efforts. Based on the reaction kinetics modeling, it was determined that the detailed set of chemical reactions for the thermal decomposition of a methyltrichlorosilane (MTS)/H2 mixture consisted of 45 species and 114 gas-phase reactions. Further work identified a mechanism consisting of approximately 60 surface reactions for the surface chemistry of SiC chemical vapor deposition. A reduced mechanism for the MTS gas-phase pyrolysis was constructed using the scanning method based on optimization concepts, which consisted of only 28 species and 29 reactions. The benefits of this project are that we have determined gas-phase species produced during and after the various decomposition reactions of MTS. The success of the computational approaches can now be used to predict the complex chemistry associated with the CVD process in producing nuclear fuel. It is expected that the knowledge we acquired can be easily transferred and that it will contribute to further experimental investigations. Furthermore, the computational techniques can now be used for reactor design and optimization for the next generation of nuclear reactors.
【 预 览 】
附件列表
Files Size Format View
RO201705180000361LZ 238KB PDF download
  文献评价指标  
  下载次数:21次 浏览次数:47次