Gamma-Ray Library and Uncertainty Analysis: Passively Emitted Gamma Rays Used in Safeguards Technology | |
Parker, W | |
关键词: ACTINIDE NUCLEI; ACTINIDES; BRANCHING RATIO; CADMIUM; COMPUTERIZED SIMULATION; COMPUTERS; ENERGY RESOLUTION; FISSION PRODUCTS; GE SEMICONDUCTOR DETECTORS; ISOTOPES; MIXTURES; NUCLEAR ENERGY; REACTOR TECHNOLOGY; REACTORS; RESOLUTION; SAFEGUARDS; SODIUM IODIDES; SPECTROSCOPY; ZINC TELLURIDES; | |
DOI : 10.2172/990415 RP-ID : LLNL-TR-417081 PID : OSTI ID: 990415 Others : TRN: US201020%%547 |
|
学科分类:化学(综合) | |
美国|英语 | |
来源: SciTech Connect | |
【 摘 要 】
Non-destructive gamma-ray analysis is a fundamental part of nuclear safeguards, including nuclear energy safeguards technology. Developing safeguards capabilities for nuclear energy will certainly benefit from the advanced use of gamma-ray spectroscopy as well as the ability to model various reactor scenarios. There is currently a wide variety of nuclear data that could be used in computer modeling and gamma-ray spectroscopy analysis. The data can be discrepant (with varying uncertainties), and it may difficult for a modeler or software developer to determine the best nuclear data set for a particular situation. To use gamma-ray spectroscopy to determine the relative isotopic composition of nuclear materials, the gamma-ray energies and the branching ratios or intensities of the gamma-rays emitted from the nuclides in the material must be well known. A variety of computer simulation codes will be used during the development of the nuclear energy safeguards, and, to compare the results of various codes, it will be essential to have all the {gamma}-ray libraries agree. Assessing our nuclear data needs allows us to create a prioritized list of desired measurements, and provides uncertainties for energies and especially for branching intensities. Of interest are actinides, fission products, and activation products, and most particularly mixtures of all of these radioactive isotopes, including mixtures of actinides and other products. Recent work includes the development of new detectors with increased energy resolution, and studies of gamma-rays and their lines used in simulation codes. Because new detectors are being developed, there is an increased need for well known nuclear data for radioactive isotopes of some elements. Safeguards technology should take advantage of all types of gamma-ray detectors, including new super cooled detectors, germanium detectors and cadmium zinc telluride detectors. Mixed isotopes, particularly mixed actinides found in nuclear reactor streams can be especially challenging to identify. The super cooled detectors have a marked improvement in energy resolution, allowing the possibility of deconvolution of mixtures of gamma rays that was unavailable with high purity germanium detectors. Isotopic analysis codes require libraries of gamma rays. In certain situations, isotope identification can be made in the field, sometimes with a short turnaround time, depending on the choice of detector and software analysis package. Sodium iodide and high purity germanium detectors have been successfully used in field scenarios. The newer super cooled detectors offer dramatically increased resolution, but they have lower efficiency and so can require longer collection times. The different peak shapes require software development for the specific detector type and field application. Libraries can be tailored to specific scenarios; by eliminating isotopes that are certainly not present, the analysis time may be shortened and the accuracy may be increased. The intent of this project was to create one accurate library of gamma rays emitted from isotopes of interest to be used as a reliable reference in safeguards work. All simulation and spectroscopy analysis codes can draw upon this best library to improve accuracy and cross-code consistency. Modeling codes may include MCNP and COG. Gamma-ray spectroscopy analysis codes may include MGA, MGAU, U235 and FRAM. The intent is to give developers and users the tools to use in nuclear energy safeguards work. In this project, the library created was limited to a selection of actinide isotopes of immediate interest to reactor technology. These isotopes included {sup 234-238}U, {sup 237}Np, {sup 238-242}Pu, {sup 241,243}Am and {sup 244}Cm. These isotopes were examined, and the best of gamma-ray data, including line energies and relative strengths were selected.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201705170000943LZ | 2992KB | download |