On The Anomalous Fast Ion Energy Diffusion in Toroidal Plasmas Due to Cavity Modes | |
N.N. Gorelenkov, N.J. Fisch and E. Fredrickson | |
关键词: CHANNELING; DIFFUSION; DISPERSION RELATIONS; EXCITATION; MAGNETIC FIELDS; OSCILLATIONS; POLARIZATION; TFTR TOKAMAK Tokamaks; Cyclotron Responance; Alfven Waves; Alpha Particles; | |
DOI : 10.2172/981655 RP-ID : PPPL-4504 PID : OSTI ID: 981655 Others : TRN: US1003879 |
|
学科分类:原子、分子光学和等离子物理 | |
美国|英语 | |
来源: SciTech Connect | |
【 摘 要 】
An enormous wave-particle diffusion coefficient along paths suitable for alpha channeling had been deduced in mode converted ion Bernstein wave experiments on Tokamak Fusion Test Reactor (TFTR) the only plausible explanation advanced for such a large diffusion coefficient was the excitation of internal cavity modes which induce particle diffusion along identical diffusion paths, but at much higher rates. Although such a mode was conjectured, it was never observed. However, recent detailed observations of high frequency compressional Alfven eigenmodes (CAEs) on the National Spherical torus Experiment (NSTX) indirectly support the existence of the related conjectured modes on TFTR. The eigenmodes responsible for the high frequency magnetic activity can be identified as CAEs through the polarization of the observed magnetic field oscillations in NSTX and through a comparison with the theoretically derived freuency dispersion relation. Here, we show how these recent observations of high frequency CAEs lend support to this explanation of the long-standing puzzle of anomalous fast ion energy diffusion on TFTR. The support of the conjecure that these internal modes could have caused the remarkable ion energy diffusion on TFTR carries significant and favorable implications for the possibilities in achieving the alpha channeling effect with small injected power in a tokamak reactor.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201704240002781LZ | 641KB | download |