Concerns in Marine Renewable Energy Projects | |
Kramer, Sharon ; Previsic, Mirko ; Nelson, Peter ; Woo, Sheri | |
关键词: ACCELERATION; DECISION MAKING; DECOMMISSIONING; ENVIRONMENTAL EFFECTS; MARKET; NAVIGATION; PERFORMANCE; RECOMMENDATIONS; SITE CHARACTERIZATION; SPECIFICATIONS; TIDAL POWER Tidal; Wave; Environmental; Marine; Hydrokinetic; Navigati; | |
DOI : 10.2172/1013423 RP-ID : DOE/GO18175 PID : OSTI ID: 1013423 |
|
学科分类:再生能源与代替技术 | |
美国|英语 | |
来源: SciTech Connect | |
【 摘 要 】
To accelerate the adoption of these emerging marine hydrokinetic technologies, navigational and environmental issues and concerns must be identified and addressed. As hydrokinetic projects move forward, various stakeholders will need to be engaged; one of the key issues that project proponents face as they engage stakeholders is that many conflicting uses and environmental issues are not well-understood. Much of this lack of understanding comes from a limited understanding of the technologies themselves. To address this issue, in September 2008, RE Vision consulting, LLC, was selected by the Department of Energy, under their market acceleration program, to apply a scenario-based assessment approach to the emerging hydrokinetic technology sector. The goal was to improve understanding of potential environmental and navigation impacts of these technologies and focus stakeholders on the critical issues. To meet this goal, the study established baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios captured variations in technical approaches and deployment scales and thus grounded the analysis in realistic constraints. The work conducted under this award provides an important foundation to other market acceleration activities carried out by the DOE and other stakeholders in this sector. The scenarios were then evaluated using a framework developed by H.T. Harvey & Associates to identify and characterize key environmental concerns and uncertainties. In collaboration with PCCI and the U.S. Coast Guard, navigation issues were assessed and guidelines developed to assure the safe operation of these systems. Finally, the work highlights ???next steps??? to take to continue development and adoption of marine hydrokinetic energy. Throughout the project, close collaboration with device developers, project developers and regulatory stakeholders was pursued to ensure that assumptions and constraints are realistic. Results concur with most of the permitting hurdles experienced by on-going projects in the U.S., and specific recommendations are provided for identifying and addressing them. While many areas of further research were identified, the study did not identify any major show-stoppers, largely because these technologies have a relatively low environmental risk-profile if compared to other activities routinely permitted in the marine environment. The frameworks and representative scenarios developed provide an objective and transparent tool for stakeholders, regulators and developers to assist in the decision-making process for siting wave and tidal energy plants, and meet our goal of improving understanding between all stakeholders. The final product consists of three reports: Report 1 - Wave Energy Scenarios. This report includes: A technology characterization of four different wave energy technologies, including major technical specifications, device performance, and technical siting considerations; A site characterization of two potential deployment sites located in Hawaii and California; Outlines of device installation, O&M and decommissioning activities; Navigational demarcation requirements; and, Deployment Scenarios, identifying all the major life-cycle-related impacts. Report 2 - Tidal Energy Scenarios. This report includes: A technology characterization of three tidal energy technologies, including major technical specifications, device performance, and technical siting considerations; A site characterization of one potential deployment location in the Puget Sound, Washington; Outlines of device installation, O&M and decommissioning activities; Navigational demarcation requirements; and, Deployment Scenarios, identifying all the major life-cycle-related impacts.Report 3 - Framework for Identifying Key Environmental Concerns. This report describes frameworks for identifying key environmental effects and applies them to the wave and tidal energy deployment scenarios described in the first two reports. It highlights critical issues and recommendations for future research.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201704240001943LZ | 5294KB | download |