科技报告详细信息
FIELD TEST INSTRUCTION 100-NR-2 OPERABLE UNIT DESIGN OPTIMIZATION STUDY FOR SEQUESTRATION OF SR-90 SATURATED ZONE APATITE PERMEABLE REACTIVE BARRIER EXTENSION
BOWLES NA
关键词: APATITES;    CAPACITY;    CONSTRUCTION;    DESIGN;    FIELD TESTS;    HYDRAULIC CONDUCTIVITY;    HYDRAULICS;    OPTIMIZATION;    ORDERS;    PERMEABILITY;    POSITIONING;    PRECURSOR;    RECOMMENDATIONS;    STRONTIUM 90;    TESTING;    US EPA;   
DOI  :  10.2172/1000062
RP-ID  :  SGW-47614 Rev 0
PID  :  OSTI ID: 1000062
Others  :  TRN: US201101%%262
学科分类:地球科学(综合)
美国|英语
来源: SciTech Connect
PDF
【 摘 要 】
The objective of this field test instruction is to provide technical guidance for aqueous injection emplacement of an extension apatite permeable reactive barrier (PRE) for the sequestration of strontium-90 (Sr-90) using a high concentration amendment formulation. These field activities will be conducted according to the guidelines established in DOE/RL-2010-29, 100-NR-2 Design Optimization Study, hereafter referred to as the DOS. The DOS supports the Federal Facility Agreement Consent Order (EPA et al., 1989), Milestone M-16-06-01, and 'Complete Construction of a Permeable Reactive Barrier at 100-N.' Injections of apatite precursor chemicals will occur at an equal distance intervals on each end of the existing PRE to extend the PRB from the existing 91 m (300 ft) to at least 274 m (900 ft). Field testing at the 100-N Area Apatite Treatability Test Site, as depicted on Figure 1, shows that the barrier is categorized by two general hydrologic conceptual models based on overall well capacity and contrast between the Hanford and Ringold hydraulic conductivities. The upstream portion of the original barrier, shown on Figure 1, is characterized by relatively low overall well specific capacity. This is estimated from well development data and a lower contrast in hydraulic conductivity between the Hanford formation and Ringold Formations. Comparison of test results from these two locations indicate that permeability contrast between the Hanford formation and Ringold Formation is significantly less over the upstream one-third of the barrier. The estimated hydraulic conductivity for the Hanford formation and Ringold Formation over the upstream portion of the barrier based on observations during emplacement of the existing 91 m (300 ft) PRB is approximately 12 and 10 m/day (39 and 32 ft/day), respectively (PNNL-17429). However, these estimates should be used as a rough guideline only, as significant variability in hydraulic conductivity is likely to be observed in the barrier extension wells, particularly those in the Ringold formation. The downstream portion of the original barrier, shown on Figure 1, is characterized by generally higher well specific capacity and a larger hydraulic conductivity contrast between the Hanford formation and Ringold Formation. Hydraulic conductivity rates for the Hanford formation and Ringold Formation over the downstream portion of the barrier were estimated at 29 and 9 m/day (95 and 29 ft/day), respectively (with the Hanford formation hydraulic conductivity being greater in the downstream portion than the upstream portion). Once again, it should be noted that the actual conductivities may vary significantly, and the values state above should only be used as a rough initial estimates. Optimum apatite emplacement has been shown to occur when injections targeting the Hanford formation and the Ringold Formation are performed separately. The remainder of this test instruction provides details for conducting these formation-targeted injections.
【 预 览 】
附件列表
Files Size Format View
RO201704240000694LZ 4286KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:13次