Fundamental Mechanisms Driving the Amorphous to Crystalline Phase Transformation | |
Reed, B W ; Browning, N D ; Santala, M K ; LaGrange, T ; Gilmer, G H ; Masiel, D J ; Campbell, G H ; Raoux, S ; Topuria, T ; Meister, S ; Cui, Y | |
关键词: AMORPHOUS STATE; CRYSTALLIZATION; DIFFRACTION; ELECTRON MICROSCOPES; GEOMETRY; INCUBATION; KINETICS; LASERS; MELTING; MELTING POINTS; MICROSCOPES; MORPHOLOGY; NUCLEATION; NUCLEI; PHASE CHANGE MATERIALS; PHASE TRANSFORMATIONS; PHYSICS; RECRYSTALLIZATION; RESOLUTION; SALT DEPOSITS; THERMODYNAMICS; TRANSFORMATIONS; | |
DOI : 10.2172/1018817 RP-ID : LLNL-TR-464792 PID : OSTI ID: 1018817 Others : TRN: US201114%%492 |
|
美国|英语 | |
来源: SciTech Connect | |
【 摘 要 】
Phase transformations are ubiquitous, fundamental phenomena that lie at the heart of many structural, optical and electronic properties in condensed matter physics and materials science. Many transformations, especially those occurring under extreme conditions such as rapid changes in the thermodynamic state, are controlled by poorly understood processes involving the nucleation and quenching of metastable phases. Typically these processes occur on time and length scales invisible to most experimental techniques ({micro}s and faster, nm and smaller), so our understanding of the dynamics tends to be very limited and indirect, often relying on simulations combined with experimental study of the ''time infinity'' end state. Experimental techniques that can directly probe phase transformations on their proper time and length scales are therefore key to providing fundamental insights into the whole area of transformation physics and materials science. LLNL possesses a unique dynamic transmission electron microscope (DTEM) capable of taking images and diffraction patterns of laser-driven material processes with resolution measured in nanometers and nanoseconds. The DTEM has previously used time-resolved diffraction patterns to quantitatively study phase transformations that are orders of magnitude too fast for conventional in situ TEM. More recently the microscope has demonstrated the ability to directly image a reaction front moving at {approx}13 nm/ns and the nucleation of a new phase behind that front. Certain compound semiconductor phase change materials, such as Ge{sub 2}Sb{sub 2}Te{sub 5} (GST), Sb{sub 2}Te and GeSb, exhibit a technologically important series of transformations on scales that fall neatly into the performance specifications of the DTEM. If a small portion of such material is heated above its melting point and then rapidly cooled, it quenches into an amorphous state. Heating again with a less intense pulse leads to recrystallization into a vacancy-stabilized metastable rock salt structure. Each transformation takes {approx}10-100 ns, and the cycle can be driven repeatedly a very large number of times with a nanosecond laser such as the DTEM's sample drive laser. These materials are widely used in optical storage devices such as rewritable CDs and DVDs, and they are also applied in a novel solid state memory technology - phase change memory (PCM). PCM has the potential to produce nonvolatile memory systems with high speed, extreme density, and very low power requirements. For PCM applications several materials properties are of great importance: the resistivities of both phases, the crystallization temperature, the melting point, the crystallization speed, reversibility (number of phase-transformation cycles without degradation) and stability against crystallization at elevated temperature. For a viable technology, all these properties need to have good scaling behavior, as dimensions of the memory cells will shrink with every generation. In this LDRD project, we used the unique single-shot nanosecond in situ experimentation capabilities of the DTEM to watch these transformations in GST on the time and length scales most relevant for device applications. Interpretation of the results was performed in conjunction with atomistic and finite-element computations. Samples were provided by collaborators at IBM and Stanford University. We observed, and measured the kinetics of, the amorphous-crystalline and melting-solidification transitions in uniform thin-film samples. Above a certain threshold, the crystal nucleation rate was found to be enormously high (with many nuclei appearing per cubic {micro}m even after nanosecond-scale incubation times), in agreement with atomistic simulation and consistent with an extremely low nucleation barrier. We developed data reduction techniques based on principal component analysis (PCA), revealing the complex, multi-dimensional evolution of the material while suppressing noise and irrelevant information. Using a novel specimen geometry, we also achieved repeated switching between the amorphous and crystalline phases enabling in situ study of structural change after phase cycling, which is relevant to device performance. We also observed the coupling between the phase transformations and the evolution of morphology on the nanometer scale, revealing the gradual development of striations in uniform films and preferential melting at sharp edges in laser-heated nanopatterned GST. This nonuniform melting, interpreted through simulation as being a direct result of geometrical laser absorption effects, appears to be responsible for a marked loss in morphological stability even at moderate laser intensities and may be an important factor in the longevity of nanostructured phase change materials in memory applications.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201704210003398LZ | 14499KB | download |