TESTS WITH HIGH-BISMUTH HLW GLASSES FINAL REPORT VSL-10R1780-1 REV 0 12/13/10 | |
MATLACK KS ; KRUGER AA ; JOSEPH I ; GAN H ; KOT WK ; CHAUDHURI M ; MOHR RK ; MCKEOWN DA ; BARDAKEI T ; GONG W ; BUECCHELE AC ; PEGG IL | |
关键词: AR FACILITIES; BISMUTH; CONTAINERS; CRUCIBLES; DESIGN; EVALUATION; GLASS; HEAT TREATMENTS; MITIGATION; PROCESSING; RIVERS; TANKS; TESTING; VITRIFICATION; WASTE PROCESSING; WASTES; | |
DOI : 10.2172/1004078 RP-ID : ORP-48628 Rev 0 PID : OSTI ID: 1004078 Others : TRN: US1101237 |
|
学科分类:核能源与工程 | |
美国|英语 | |
来源: SciTech Connect | |
【 摘 要 】
This Final Report describes the testing of glass formulations developed for Hanford High Level Waste (HLW) containing high concentrations of bismuth. In previous work on high-bismuth HLW streams specified by the Office of River Protection (ORP), fully compliant, high waste loading compositions were developed and subjected to melter testing on the DM100 vitrification system. However, during heat treatment according to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW canister centerline cooling (CCC) curves, crucible melts of the high-bismuth glasses were observed to foam. Clearly, such an occurrence during cooling of actual HLW canisters would be highly undesirable. Accordingly, the present work involves larger-scale testing to determine whether this effect occurs under more prototypical conditions, as well as crucible-scale tests to determine the causes and potentially remediate the observed foaming behavior. The work included preparation and characterization of crucible melts designed to determine the underlying causes of the foaming behavior as well as to assess potential mitigation strategies. Testing was also conducted on the DM1200 HLW Pilot melter with a composition previously tested on the DM100 and shown to foam during crucible-scale CCC heat treatment. The DM1200 tests evaluated foaming of glasses over a range of bismuth concentrations poured into temperature-controlled, 55-gallon drums which have a diameter that is close to that of the full-scale WTP HLW canisters. In addition, the DM1200 tests provided the first large-scale melter test data on high-bismuth WTP HLW compositions, including information on processing rates, cold cap behavior and off-gas characteristics, and data from this waste composition on the prototypical DM1200 off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for ORP on the same waste composition. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. The present glass formulation and melter testing work was aimed at one of the four waste streams previously specified by the Office of River Protection (ORP). Such testing supports the ORP basis for projection of the amount of Immobilized High Level Waste (IHLW) to be produced at Hanford and evaluation of the likely potential for future enhancements of the WTP over and above the present well-developed baseline. It should be noted that the compositions of the four ORP-specified waste streams differ significantly from those of the feed tanks (AZ-101, AZ-102, C-16/AY-102, and C-104/AY-101) that have been the focus of the extensive technology development and design work performed for the WTP baseline. In this regard, the work on the ORP-specified compositions is complementary to and necessarily of a more exploratory nature than the work in support of the current WTP baseline.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201704210003384LZ | 36167KB | download |