DUSEL Facility Cooling Water Scaling Issues | |
Daily, W D | |
关键词: ALKALINE EARTH METALS; AQUEOUS SOLUTIONS; BARIUM SULFATES; CALCIUM; CALCIUM CARBONATES; CALCIUM COMPOUNDS; CALCIUM SULFATES; CRYSTAL LATTICES; GYPSUM; HEAT EXCHANGERS; NATURAL GAS WELLS; PETROLEUM INDUSTRY; PRECIPITATION; PRESSURE DEPENDENCE; PRESSURE DROP; REACTION KINETICS; SCALING; SOLUBILITY; SURFACE AREA; THERMODYNAMICS; WATER CHEMISTRY; | |
DOI : 10.2172/1022887 RP-ID : LLNL-TR-478891 PID : OSTI ID: 1022887 Others : TRN: US201118%%573 |
|
美国|英语 | |
来源: SciTech Connect | |
【 摘 要 】
Precipitation (crystal growth) in supersaturated solutions is governed by both kenetic and thermodynamic processes. This is an important and evolving field of research, especially for the petroleum industry. There are several types of precipitates including sulfate compounds (ie. barium sulfate) and calcium compounds (ie. calcium carbonate). The chemical makeup of the mine water has relatively large concentrations of sulfate as compared to calcium, so we may expect that sulfate type reactions. The kinetics of calcium sulfate dihydrate (CaSO4 {center_dot} 2H20, gypsum) scale formation on heat exchanger surfaces from aqueous solutions has been studied by a highly reproducible technique. It has been found that gypsum scale formation takes place directly on the surface of the heat exchanger without any bulk or spontaneous precipitation in the reaction cell. The kinetic data also indicate that the rate of scale formation is a function of surface area and the metallurgy of the heat exchanger. As we don't have detailed information about the heat exchanger, we can only infer that this will be an issue for us. Supersaturations of various compounds are affected differently by temperature, pressure and pH. Pressure has only a slight affect on the solubility, whereas temperature is a much more sensitive parameter (Figure 1). The affect of temperature is reversed for calcium carbonate and barium sulfate solubilities. As temperature increases, barium sulfate solubility concentrations increase and scaling decreases. For calcium carbonate, the scaling tendencies increase with increasing temperature. This is all relative, as the temperatures and pressures of the referenced experiments range from 122 to 356 F. Their pressures range from 200 to 4000 psi. Because the cooling water system isn't likely to see pressures above 200 psi, it's unclear if this pressure/scaling relationship will be significant or even apparent. The most common scale minerals found in the oilfield include calcium carbonates (CaCO3, mainly calcite) and alkaline-earth metal sulfates (barite BaSO4, celestite SrSO4, anhydrite CaSO4, hemihydrate CaSO4 1/2H2O, and gypsum CaSO4 2H2O or calcium sulfate). The cause of scaling can be difficult to identify in real oil and gas wells. However, pressure and temperature changes during the flow of fluids are primary reasons for the formation of carbonate scales, because the escape of CO2 and/or H2S gases out of the brine solution, as pressure is lowered, tends to elevate the pH of the brine and result in super-saturation with respect to carbonates. Concerning sulfate scales, the common cause is commingling of different sources of brines either due to breakthrough of injected incompatible waters or mixing of two different brines from different zones of the reservoir formation. A decrease in temperature tends to cause barite to precipitate, opposite of calcite. In addition, pressure drops tend to cause all scale minerals to precipitate due to the pressure dependence of the solubility product. And we can expect that there will be a pressure drop across the heat exchanger. Weather or not this will be offset by the rise in pressure remains to be seen. It's typically left to field testing to prove out. Progress has been made toward the control and treatment of the scale deposits, although most of the reaction mechanisms are still not well understood. Often the most efficient and economic treatment for scale formation is to apply threshold chemical inhibitors. Threshold scale inhibitors are like catalysts and have inhibition efficiency at very low concentrations (commonly less than a few mg/L), far below the stoichiometric concentrations of the crystal lattice ions in solution. There are many chemical classes of inhibitors and even more brands on the market. Based on the water chemistry it is anticipated that there is a high likelihood for sulfate compound precipitation and scaling. This may be dependent on the temperature and pressure, which vary throughout the system. Therefore, various types and amounts of scaling may occur at different locations. Although it has been shown that decreased pressure causes increased scaling, it is unclear if this condition will have significant affect, as all the pressures are low. Sulfate concentrations predominate, but there is still a chance for calcium carbonate buildup, especially in the heat exchanger where the temperatures are rising. Additional information is needed to conduct a thorough analysis, but it would appear that a fairly simple injection system would be sufficient to address scaling issues.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201704210002596LZ | 1127KB | download |