RECOVERY ACT: DYNAMIC ENERGY CONSUMPTION MANAGEMENT OF ROUTING TELECOM AND DATA CENTERS THROUGH REAL-TIME OPTIMAL CONTROL (RTOC): Final Scientific/Technical Report | |
Ron Moon | |
关键词: ALGORITHMS; CAPITAL; ENERGY CONSUMPTION; ENERGY EFFICIENCY; IMPLEMENTATION; MANAGEMENT; MARKET; MATHEMATICAL MODELS; METRICS; MICROELECTRONICS; MODIFICATIONS; OPTIMAL CONTROL; PERFORMANCE; POLLUTANTS; POWER SYSTEMS; PROCESSING; ROUTING; SIMULATION; | |
DOI : 10.2172/1018478 RP-ID : DOE/EE0002888-1 PID : OSTI ID: 1018478 Others : TRN: US201114%%160 |
|
学科分类:电力 | |
美国|英语 | |
来源: SciTech Connect | |
【 摘 要 】
This final scientific report documents the Industrial Technology Program (ITP) Stage 2 Concept Development effort on Data Center Energy Reduction and Management Through Real-Time Optimal Control (RTOC). Society is becoming increasingly dependent on information technology systems, driving exponential growth in demand for data center processing and an insatiable appetite for energy. David Raths noted, 'A 50,000-square-foot data center uses approximately 4 megawatts of power, or the equivalent of 57 barrels of oil a day1.' The problem has become so severe that in some cases, users are giving up raw performance for a better balance between performance and energy efficiency. Historically, power systems for data centers were crudely sized to meet maximum demand. Since many servers operate at 60%-90% of maximum power while only utilizing an average of 5% to 15% of their capability, there are huge inefficiencies in the consumption and delivery of power in these data centers. The goal of the 'Recovery Act: Decreasing Data Center Energy Use through Network and Infrastructure Control' is to develop a state of the art approach for autonomously and intelligently reducing and managing data center power through real-time optimal control. Advances in microelectronics and software are enabling the opportunity to realize significant data center power savings through the implementation of autonomous power management control algorithms. The first step to realizing these savings was addressed in this study through the successful creation of a flexible and scalable mathematical model (equation) for data center behavior and the formulation of an acceptable low technical risk market introduction strategy leveraging commercial hardware and software familiar to the data center market. Follow-on Stage 3 Concept Development efforts include predictive modeling and simulation of algorithm performance, prototype demonstrations with representative data center equipment to verify requisite performance and continued commercial partnering agreement formation to ensure uninterrupted development, and deployment of the real-time optimal control algorithm. As a software implementable technique for reducing power consumption, the RTOC has two very desirable traits supporting rapid prototyping and ultimately widespread dissemination. First, very little capital is required for implementation. No major infrastructure modifications are required and there is no need to purchase expensive capital equipment. Second, the RTOC can be rolled out incrementally. Therefore, the effectiveness can be proven without a large scale initial roll out. Through the use of the Impact Projections Model provided by the DOE, monetary savings in excess of $100M in 2020 and billions by 2040 are predicted. In terms of energy savings, the model predicts a primary energy displacement of 260 trillion BTUs (33 trillion kWh), or a 50% reduction in server power consumption. The model also predicts a corresponding reduction of pollutants such as SO2 and NOx in excess of 100,000 metric tonnes assuming the RTOC is fully deployed. While additional development and prototyping is required to validate these predictions, the relative low cost and ease of implementation compared to large capital projects makes it an ideal candidate for further investigation.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201704210001894LZ | 1166KB | download |