科技报告详细信息
Preparation of Radiopharmaceuticals Labeled with Metal Radionuclides
Welch, M.J.
关键词: ANTIBODIES;    COPPER;    DIMERS;    DRUGS;    IN VITRO;    IN VIVO;    ISOTOPES;    LARGE INTESTINE;    NEOPLASMS;    POSITRONS;    RADIOISOTOPES;    RADIOPHARMACEUTICALS;    RADIOTHERAPY;    RESEARCH REACTORS;    RETENTION;    SCANDIUM;    SURVIVAL TIME;    TECHNETIUM;    TITANIUM;    TITANIUM 45;   
DOI  :  10.2172/1034900
RP-ID  :  DOE/ER/60512- Final Report
PID  :  OSTI ID: 1034900
Others  :  TRN: US1202517
学科分类:放射科、核医学、医学影像
美国|英语
来源: SciTech Connect
PDF
【 摘 要 】
The overall goal of this project was to develop methods for the production of metal-based radionuclides, to develop metal-based radiopharmaceuticals and in a limited number of cases, to translate these agents to the clinical situation. Initial work concentrated on the application of the radionuclides of Cu, Cu-60, Cu-61 and Cu-64, as well as application of Ga-68 radiopharmaceuticals. Initially Cu-64 was produced at the Missouri University Research Reactor and experiments carried out at Washington University. A limited number of studies were carried out utilizing Cu-62, a generator produced radionuclide produced by Mallinckrodt Inc. (now Covidien). In these studies, copper-62-labeled pyruvaldehyde Bis(N{sup 4}-methylthiosemicarbazonato)-copper(II) was studied as an agent for cerebral myocardial perfusion. A remote system for the production of this radiopharmaceutical was developed and a limited number of patient studies carried out with this agent. Various other copper radiopharmaceuticals were investigated, these included copper labeled blood imaging agents as well as Cu-64 labeled antibodies. Cu-64 labeled antibodies targeting colon cancer were translated to the human situation. Cu-64 was also used to label peptides (Cu-64 octriatide) and this is one of the first applications of a peptide radiolabeled with a positron emitting metal radionuclide. Investigations were then pursued on the preparation of the copper radionuclides on a small biomedical cyclotron. A system for the production of high specific activity Cu-64 was developed and initially the Cu-64 was utilized to study the hypoxic imaging agent Cu-64 ATSM. Utilizing the same target system, other positron emitting metal radionuclides were produced, these were Y-86 and Ga-66. Radiopharmaceuticals were labeled utilizing both of these radionuclides. Many studies were carried out in animal models on the uptake of Cu-ATSM in hypoxic tissue. The hypothesis is that Cu-ATSM retention in vivo is dependent upon the oxygen retention of the tissue and the significantly greater retention amounting in hypoxic tissue. This hypothesis was confirmed in a series of animal studies. Cu-64 can be used both as an imaging radionuclide and a therapeutic radionuclide. The therapeutic efficacy of Cu-64 ATSM was proven in hamsters bearing the CW39 human colorectal tumors. The administration of Cu-64 ATSM significantly increased the survival time of tumor-bearing animals with no acute toxicity. This copper agent therefore shows promise for radiotherapy. The flow tracer Cu-64 PTSM also demonstrates therapeutic potential by inhibiting cancer cells implanted in animal models. Again, this inhibition occurred at doses which showed no sign of toxicity to the animals. Cu-ATSM was translated to humans, under other support a series of tumors were investigated; these included head and neck cancer, non-small cell lung cancer, cervical cancer and renal cancer. Another radionuclide that was investigated was titanium 45. This radionuclide was successfully produced by radiation of a scandium foil with 15 MeV protons. The titanium 45 was processed and separated from residual scandium by high exchange chomotrophy. Titanium titanocene has been utilized as a therapeutic agent; this compound was prepared and studied in vitro and in vivo. Another project was the preparation of cyclodextrin dimers as a new pre-targeting approach for tumor uptake. Beta-cyclodextradin and two other dimers were synthesized. These dimers were studied for the in vivo application. Work continued on the application of the radionuclide already discussed. Technetium 94m, a positron emitting radionuclide of the widely used 99m Tc nuclide was also prepared. This allows the quantification of the uptake of technetium radiopharmaceuticals. In collaboration with Professor David Piwnica-Worms, technetium 94m, sestamibi was studied in animal models and in a limited number of human subjects.
【 预 览 】
附件列表
Files Size Format View
RO201704190004100LZ 73KB PDF download
  文献评价指标  
  下载次数:16次 浏览次数:63次