科技报告详细信息
DEVELOPMENT OF A SOFTWARE DESIGN TOOL FOR HYBRID SOLAR-GEOTHERMAL HEAT PUMP SYSTEMS IN HEATING- AND COOLING-DOMINATED BUILDINGS
Yavuzturk, C. C.1  Chiasson, A. D.1  Filburn, T. P.1 
[1] Univ. of Hartford, West Hartford, CT (United States)
关键词: Hybrid Solar-Geothermal Heat Pump Systems;    Optimization;    ground loads;   
DOI  :  10.2172/1057066
RP-ID  :  DOE--EE0002804-1
PID  :  OSTI ID: 1057066
学科分类:再生能源与代替技术
美国|英语
来源: SciTech Connect
【 摘 要 】

This project provides an easy-to-use, menu-driven, software tool for designing hybrid solar-geothermal heat pump systems (GHP) for both heating- and cooling-dominated buildings. No such design tool currently exists. In heating-dominated buildings, the design approach takes advantage of glazed solar collectors to effectively balance the annual thermal loads on the ground with renewable solar energy. In cooling-dominated climates, the design approach takes advantage of relatively low-cost, unglazed solar collectors as the heat rejecting component. The primary benefit of hybrid GHPs is the reduced initial cost of the ground heat exchanger (GHX). Furthermore, solar thermal collectors can be used to balance the ground loads over the annual cycle, thus making the GHX fully sustainable; in heating-dominated buildings, the hybrid energy source (i.e., solar) is renewable, in contrast to a typical fossil fuel boiler or electric resistance as the hybrid component; in cooling-dominated buildings, use of unglazed solar collectors as a heat rejecter allows for passive heat rejection, in contrast to a cooling tower that consumes a significant amount of energy to operate, and hybrid GHPs can expand the market by allowing reduced GHX footprint in both heating- and cooling-dominated climates. The design tool allows for the straight-forward design of innovative GHP systems that currently pose a significant design challenge. The project lays the foundations for proper and reliable design of hybrid GHP systems, overcoming a series of difficult and cumbersome steps without the use of a system simulation approach, and without an automated optimization scheme. As new technologies and design concepts emerge, sophisticated design tools and methodologies must accompany them and be made usable for practitioners. Lack of reliable design tools results in reluctance of practitioners to implement more complex systems. A menu-driven software tool for the design of hybrid solar GHP systems is provided that is based on mathematically robust, validated models. An automated optimization tool is used to balance ground loads and incorporated into the simulation engine. With knowledge of the building loads, thermal properties of the ground, the borehole heat exchanger configuration, the heat pump peak hourly and seasonal COP for heating and cooling, the critical heat pump design entering fluid temperature, and the thermal performance of a solar collector, the total GHX length can be calculated along with the area of a supplemental solar collector array and the corresponding reduced GHX length. An economic analysis module allows for the calculation of the lowest capital cost combination of solar collector area and GHX length. ACKNOWLEDGMENTS This project was funded by the United States Department of Energy DOE-DE-FOA-0000116, Recovery Act Geothermal Technologies Program: Ground Source Heat Pumps. The lead contractor, The University of Hartford, was supported by The University of Dayton, and the Oak Ridge National Laboratories. All funding and support for this project as well as contributions of graduate and undergraduate students from the contributing institutions are gratefully acknowledged.

附件列表
Files Size Format View
RO201704190000452LZ 1839KB TEXT download
  文献评价指标  
  下载次数:17次 浏览次数:15次